Abstract

Liquid–vapor flows are present in many industrial applications. In particular, in the solar field, these flows are encountered in the new generations of solar parabolic trough collectors with direct steam generation (PTCs-DSG). In this technical brief, we compare the two-phase convective transfer and the pressure drop models in the PTC-DSG. The results show that the heat exchange coefficients estimated by Chen–Cooper, Shah, Gungor–Winterton, and Kandlikar models have same trend with difference between them. However, the models of Liu–Winterton and Steiner–Taborek seem inappropriate due to the decrease in the exchange coefficient for moderate and high steam qualities. In addition, a comparison of the models describing pressure drops with experimental data of literature was carried out. The results show that the pressure decreases as the steam quality increases and the differences between these models remain small. Friedel's model is the closest to the experiment for high inlet pressures and flow rates, while Chisholm's model gives the best prediction of the pressure drop for low inlet conditions. Effect analysis of inlet conditions shows that the increase in inlet water mass flow and decrease in pressure favor convective heat transfer. The variation of heat flux on tube wall does not affect the convective boiling heat coefficient evaluated by the Chen–Copper model, whereas it influences the calculating coefficient by Gungor–Winterton model for high heat flux and particularly for low steam qualities. Pressure drops are higher at high flow rates and low pressures.

References

1.
Chen
,
J. C.
,
1966
, “
Correlation for Boiling Heat Transfer to Saturated Fluids in Convective Flow
,”
Ind. Eng. Chem. Process Des. Dev.
,
5
(
3
), pp.
322
329
.10.1021/i260019a023
2.
Shah
,
M. M.
,
1976
, “
A New Correlation for Heat Transfer During Boiling  Flow Through Pipes
,”
ASHRAE Trans.
,
82
(
2
), pp.
66
86
.https://www.researchgate.net/publication/279539676
3.
Gungor
,
K. E.
, and
Winterton
,
R.
,
1986
, “
A General Correlation for Flow Boiling in Tubes and Annuli
,”
Int. J. Heat Mass Transfer
,
29
(
3
), pp.
351
358
.10.1016/0017-9310(86)90205-X
4.
Kandlikar
,
S. G.
,
1990
, “
A General Correlation for Saturated Two-Phase Flow Boiling Heat Transfer Inside Horizontal and Vertical Tubes
,”
ASME J. Heat Transfer
, 112(1), pp. 219–228. 10.1115/1.2910348
5.
Liu
,
Z.
, and
Winterton
,
R.
,
1991
, “
A General Correlation for Saturated and Subcooled Flow Boiling in Tubes and Annuli, Based on a Nucleate Pool Boiling Equation
,”
Int. J. Heat Mass Transfer
,
34
(
11
), pp.
2759
2766
.10.1016/0017-9310(91)90234-6
6.
Steiner
,
D.
, and
Taborek
,
J.
,
1992
, “
Flow Boiling Heat Transfer in Vertical Tubes Correlated by an Asymptotic Model
,”
Heat Transfer Eng.
,
13
(
2
), pp.
43
69
.10.1080/01457639208939774
7.
Lockhart
,
R. W.
, and
Martinelli
,
R. C.
,
1949
, “
Proposed Correlation of Data for Isothermal Two-Phase, Two Component in Pipes
,”
Chem. Eng. Process
,
45
(
1
), pp.
39
48
.http://dns2.asia.edu.tw/~ysho/YSHO-english/1000%20CE/PDF/Che%20Eng%20Pro45,%2039.pdf
8.
Grönnerud
,
R.
,
1972
, “
Investigation of Liquid Hold-Up, Flow-Resistance and Heat Transfer in Circulation Type Evaporators—Part IV: Two-Phase Flow Resistance in Boiling Refrigerants
,”
Bull. L'Inst. Du Froid, Annexe
, 1, p. 1972–1. 
9.
Chisholm
,
D.
,
1973
, “
Pressure Gradients Due to Friction During the Flow of Evaporating Two-Phase Mixtures in Smooth Tubes and Channels
,”
Int. J. Heat Mass Transfer
,
16
(
2
), pp.
347
358
.10.1016/0017-9310(73)90063-X
10.
Friedel
,
L.
,
1979
, “
Improved Friction Pressure Drop Correlation for Horizontal and Vertical Two-Phase Pipe Flow
,”
Proceedings of European Two-Phase Flow Group Meeting
,
Ispra, Italy
, June 5–8, 18(2), pp.
485
492
https://www.semanticscholar.org/paper/Improved-Friction-Pressure-Drop-Correlation-for-and-Friedel/5e65d566aaeff9037a4918d6f60d742787ce0d4a#paper-header
11.
Müller-Steinhagen
,
H.
, and
Heck
,
K.
,
1986
, “
A Simple Friction Pressure Drop Correlation for Two-Phase Flow in Pipes
,”
Chem. Eng. Process. Process Intensif.
,
20
(
6
), pp.
297
308
.10.1016/0255-2701(86)80008-3
12.
Garrido Camino
,
C.
,
2013
, “
Design and Thermal Analysis of a Direct Steam Generation Central-Receiver Solar Thermal Power Plant
,”
B.S. thesis
, School of Engineering Thermal and Fluid Engineering Department, Carlos III University of Madrid, Madrid, Spain. https://core.ac.uk/download/pdf/29405091.pdf
13.
Serrano-Aguilera
,
J.
,
Valenzuela
,
L.
, and
Parras
,
L.
,
2017
, “
Thermal Hydraulic RELAP5 Model for a Solar Direct Steam Generation System Based on Parabolic Trough Collectors Operating in Once-Through Mode
,”
Energy
,
133
, pp.
796
807
.10.1016/j.energy.2017.05.156
14.
Odeh
,
S.
,
Morrison
,
G.
, and
Behnia
,
M.
,
1998
, “
Modelling of Parabolic Trough Direct Steam Generation Solar Collectors
,”
Sol. Energy
,
62
(
6
), pp.
395
406
.10.1016/S0038-092X(98)00031-0
15.
You
,
C.
,
Zhang
,
W.
, and
Yin
,
Z.
,
2013
, “
Modeling of Fluid Flow and Heat Transfer in a Trough Solar Collector
,”
Appl. Therm. Eng.
,
54
(
1
), pp.
247
254
.10.1016/j.applthermaleng.2013.01.046
16.
Aurousseau
,
A.
,
2016
, “
Modélisation Dynamique et Régulation Des Centrales Solaires Thermodynamiques Linéaires à Génération Directe de Vapeur
,”
Ph.D. thesis
,
Ecole nationale des Mines d'Albi-Carmaux
, Université Fédérale Toulouse Midi-Pyrénées, Toulouse, France. https://tel.archives-ouvertes.fr/tel-01373286/document
17.
Eck
,
M.
, and
Steinmann
,
W.-D.
,
2005
, “
Modelling and Design of Direct Solar Steam Generating Collector Fields
,”
ASME J. Sol. Energy Eng
,
127
(
3
), pp.
371
380
.10.1115/1.1849225
18.
Bonilla Cruz
,
J.
,
Yebra Muñoz
,
L. J.
,
Dormido Bencomo
,
S.
, and
Zarza Moya
,
E.
,
2013
, “
Modeling and Simulation of Two-Phase Flow Evaporators for Parabolic-Trough Solar Thermal Power Plants
,” Gobierno de España, Ministerio de economía y competitividad.
19.
Moya
,
E. Z.
,
2003
, “
Generación Directa de Vapor Con Colectores Solares Cilindro Parabólicos: Proyecto Direct Solar Steam (Diss)
,”
Ph.D. thesis
,
Universidad de Sevilla
, Sevilla, Spain. https://idus.us.es/handle/11441/15300
20.
Whalley
,
P.
,
1980
, “
Multiphase Flow and Pressure Drop
,”
Heat Exchanger Design Handbook
,
G. F.
Hewitt
, ed.,
Hemisphere
,
Washington, DC
, Vol.
2
, pp.
2.3.3
2.3.11
.
21.
Didi
,
M. O.
,
Kattan
,
N.
, and
Thome
,
J.
,
2002
, “
Prediction of Two-Phase Pressure Gradients of Refrigerants in Horizontal Tubes
,”
Int. J. Refrig.
,
25
(
7
), pp.
935
947
.10.1016/S0140-7007(01)00099-8
22.
Biencinto
,
M.
,
González
,
L.
, and
Valenzuela
,
L.
,
2016
, “
A Quasi-Dynamic Simulation Model for Direct Steam Generation in Parabolic Troughs Using Trnsys
,”
Appl. Energy
,
161
, pp.
133
142
.10.1016/j.apenergy.2015.10.001
23.
Quibén
,
J. M.
, and
Thome
,
J. R.
,
2007
, “
Flow Pattern Based Two-Phase Frictional Pressure Drop Model for Horizontal Tubes—Part II: New Phenomenological Model
,”
Int. J. Heat Fluid Flow
,
28
(
5
), pp.
1060
1072
.10.1016/j.ijheatfluidflow.2007.01.004
24.
Hachicha
,
A. A.
,
Rodríguez
,
I.
, and
Ghenai
,
C.
,
2018
, “
Thermo-Hydraulic Analysis and Numerical Simulation of a Parabolic Trough Solar Collector for Direct Steam Generation
,”
Appl. Energy
,
214
, pp.
152
165
.10.1016/j.apenergy.2018.01.054
25.
Zarza
,
E.
,
2002
, “
DISS Phase II Final Report
,” CIEMAT, Madrid, Report No. JOR3-CT98-0277.
26.
Lobón
,
D. H.
, and
Valenzuela
,
L.
,
2013
, “
Impact of Pressure Losses in Small-Sized Parabolic-Trough Collectors for Direct Steam Generation
,”
Energy
,
61
, pp.
502
512
.10.1016/j.energy.2013.08.049
27.
Cundapí
,
R.
,
Moya
,
S. L.
, and
Valenzuela
,
L.
,
2017
, “
Approaches to Modelling a Solar Field for Direct Generation of Industrial Steam
,”
Renew. Energy
,
103
, pp.
666
681
.10.1016/j.renene.2016.10.081
28.
Valenzuela
,
L.
,
Hernández-Lobón
,
D.
, and
Zarza
,
E.
,
2012
, “
Sensitivity Analysis of Saturated Steam Production in Parabolic Trough Collectors
,”
Energy Procedia
,
30
, pp.
765
774
.10.1016/j.egypro.2012.11.087
29.
Odeh
,
S.
,
Behnia
,
M.
, and
Morrison
,
G.
,
2000
, “
Hydrodynamic Analysis of Direct Steam Generation Solar Collectors
,”
ASME J. Sol. Energy Eng.
,
122
(
1
), pp.
14
22
.10.1115/1.556273
30.
Lobón
,
D. H.
,
Baglietto
,
E.
,
Valenzuela
,
L.
, and
Zarza
,
E.
,
2014
, “
Modeling Direct Steam Generation in Solar Collectors With Multiphase CFD
,”
Appl. Energy
,
113
, pp.
1338
1348
.10.1016/j.apenergy.2013.08.046
31.
Stephan
,
K.
,
1992
,
Heat Transfer in Condensation and Boiling, International Series in Heat and Mass Transfer
,
Springer
,
Berlin
.
You do not currently have access to this content.