Abstract
Matrix method of solution is applied to determine generalized thermoelastic wave propagation in an unbounded medium due to periodically varying heat source under the influence of magnetic field. Green–Lindsay (GL) model of generalized thermoelasticity for finite wave propagation is considered along with a magnetic field for a rotating medium with uniform velocity. Basic equations are solved by eigenvalue approach method after compiling in a form of vector–matrix linear differential equation in Laplace transform domain. Finally inverting the perturbed magnetic field and other field variables by a suitable numerical method, the results are analyzed by depicting several graphs in space–time domain.
Issue Section:
Heat and Mass Transfer
References
1.
Ackerman
,
C. C.
,
Bertman
,
B.
,
Fairbank
,
H. A.
, and
Guyer
,
R. A.
, 1966
, “
Second Sound in Solid Helium
,” Phys. Rev. Lett.
,
16
(18
), pp. 789
–791
.10.1103/PhysRevLett.16.7892.
Ackerman
,
C. C.
, and
Guyer
,
R. A.
, 1968
, “
Temperature Pulses in Dielectric Solids
,” Ann. Phys.
,
50
(1
), pp. 128
–185
.10.1016/0003-4916(68)90320-53.
Rogers
,
S. J.
, 1971
, “
Transport of Heat and Approach to Second Sound in Some Isotropically Pure Alkali-Halide Crystals
,” Phys. Rev. B
,
3
(4
), pp. 1440
–1457
.10.1103/PhysRevB.3.14404.
Jackson
,
M. E.
, and
Walker
,
C. T.
, 1971
, “
Thermal Conductivity, Second Sound and Phonon-Phonon Interactions in NaF
,” Phys. Rev. B
,
3
(4
), pp. 1428
–1439
.10.1103/PhysRevB.3.14285.
Lord
,
H.
, and
Shulman
,
Y.
, 1967
, “
A Generalized Dynamical Theory of Thermoelasticity
,” J. Mech. Phys. Solids
,
15
(5
), pp. 299
–309
.10.1016/0022-5096(67)90024-56.
Green
,
A. E.
, and
Lindsay
,
K. A.
, 1972
, “
Thermoelasticity
,” J. Elasticity
,
2
(1
), pp. 1
–7
.10.1007/BF000456897.
Green
,
A. E.
, and
Laws
,
N.
, 1972
, “
On the Entropy Production Inequality
,” Arch. Ration. Mech. Anal.
,
45
(1
), pp. 47
–53
.10.1007/BF002533958.
Green
,
A. E.
, and
Naghdi
,
P. M.
, 1991
, “
A Re-Examination of the Basic Results of Thermodynamics
,” Proc. R. Soc. London, Ser. A
,
432
(1885
), pp. 171
–194
.10.1098/rspa.1991.00129.
Bayones
,
F. S.
, and
Abd-Alla
,
A. M.
, 2017
, “
Eigenvalue Approach to Two Dimensional Coupled Magneto-Thermoelasticity in a Rotating Isotropic Medium
,” Results Phys.
,
7
, pp. 2941
–2949
.10.1016/j.rinp.2017.07.05310.
Abo-Dahab
,
S. M.
, and
Biswas
,
S.
, 2017
, “
Effect of Rotation on Rayleigh Waves in Magneto-Thermoelastic Transversely Isotropic Medium With Thermal Relaxation
,” J. Electromagn. Waves Appl.
,
31
(15
), pp. 1485
–1507
.10.1080/09205071.2017.135140311.
Othman
,
M. I. A.
, and
Said
,
S. M.
, 2015
, “
The Effect of Rotation on a Fibre-Reinforced Medium Under Generalized Magneto-Thermoelasticity With Internal Heat Sources
,” Mech. Adv. Mater. Struct.
,
22
(3
), pp. 168
–183
.10.1080/15376494.2012.72550812.
Abo-Dahab
,
S. M.
,
Abd-Alla
,
A. M.
, and
Mahmoud
,
A. E.
, 2017
, “
Thermal Stresses in Thermoelastic Half Space Without Energy Dissipation Subjected to Rotation and Magnetic Field
,” Appl. Math. Inf. Sci.
,
11
(6
), pp. 1637
–1647
.10.18576/amis/11061113.
Mashat
,
D. S.
,
Zenkour
,
A. M.
, and
Abouelregal
,
A. E.
, 2017
, “
Thermoelastic Interactions in a Rotating Infinite Orthotropic Elastic Body With a Cylindrical Hole and Variable Thermal Conductivity
,” Arch. Mech. Eng.
,
64
(4
), pp. 481
–498
.10.1515/meceng-2017-002814.
Zenkour
,
A. M.
, 2017
, “
Vibration Analysis of Generalized Thermoelastic Microbeams Resting on Viscopasternak Foundations
,” Adv. Aircr. Spacecr. Sci.
,
4
(3
), pp. 269
–280
.10.12989/aas.2017.4.3.26915.
Ezzat
,
M. A.
, and
El-Bary
,
A. A.
, 2016
, “
Effect of Variable Thermal Conductivity and Fractional Order of Heat Transfer on a Perfect Conducting Infinitely Long Hollow Cylinder
,” Int. J. Therm. Sci.
,
108
, pp. 62
–69
.10.1016/j.ijthermalsci.2016.04.02016.
Xiong
,
C.
, and
Guo
,
Y.
, 2016
, “
Effect of Variable Properties and Moving Heat Sources on Magnetothermoelastic Problem Under Fractional Order Thermoelasticity
,” Adv. Mater. Sci. Eng.
,
2016
, p. 5341569
.10.1155/2016/534156917.
Abo-Dahab
,
S. M.
, and
Salama Moustafa
,
M.
, 2014
, “
A Plane Magnetothermoelastic Waves Reflection and Refraction Between Two Solid Media With External Heat Sources and Initial Stress
,” J. Therm. Stresses
,
37
(9
), pp. 1124
–1151
.10.1080/01495739.2014.91340518.
Abo-Dahab
,
S. M.
, 2015
, “
On Magnetic Field and Two Thermal Relaxation Times for p-Waves Propagation at Interface Between Two Solid Liquid Media Under Initial Stress and Heat Sources
,” J. Comput. Theor. Nanosci.
,
12
(3
), pp. 361
–370
.10.1166/jctn.2015.373719.
Abo-Dahab
,
S. M.
,
Allam Mohamed
,
N. M.
, and
Abdel-Aty
,
M.
, 2019
, “
Reflection and Refraction of Incident p-, T-, and SV-Waves at Interface Between Magnetized Two Solid-Liquid Media With Heat Sources and Initial Stress With and Without Thermal Relaxation Times
,” J. Therm. Stresses
,
42
(2
), pp. 233
–253
.10.1080/01495739.2018.144329920.
Schoenberg
,
M.
, and
Censor
,
D.
, 1973
, “
Elastic Waves in Rotating Medium
,” Q. J. Mech. Appl. Math.
,
31
, pp. 115
–125
.10.1090/qam/9970821.
Othman
,
M. I. A.
, and
Song
,
Y.
, 2011
, “
Reflection of Magneto-Thermoelastic Waves From a Rotating Elastic Half Space in Generalized Thermoelasticity Under Three Theories
,” Mech. Mech. Eng.
,
15
(1
), pp. 5
–24
.22.
Das
,
N. C.
,
Das
,
S. N.
, and
Das
,
B.
, 1983
, “
Eigenvalue Approach to Thermoelasticity
,” J. Therm. Stresses
,
6
(1
), pp. 35
–43
.10.1080/0149573830894216423.
Baksi
,
A.
,
Bera
,
R. K.
, and
Debnath
,
L.
, 2004
, “
Eigenvalue Approach to Study the Effect of Rotation and Relaxation Time in Two Dimensional Problem of Generalized Thermoelasticity
,” Int. J. Eng. Sci.
,
42
(15–16
), pp. 1573
–1585
.10.1016/j.ijengsci.2004.03.00324.
Sinha
,
M.
, and
Bera
,
R. K.
, 2003
, “
Eigenvalue Approach to Study the Effect of Rotation and Relaxation Time in Generalized Thermoelasticity
,” Comp. Math. Appl.
,
46
(5–6
), pp. 783
–792
.10.1016/S0898-1221(03)90141-625.
Roychoudhuri
,
S. K.
, and
Banerjee
,
M.
, 2004
, “
Magnetoelastic Plane Waves in Rotating Media in Thermoelasticity of Type II (GN-Model)
,” Int. J. Math. Sci.
,
71
, pp. 3917
–3929
.10.1155/S016117120440456626.
Das
,
P.
, and
Kanoria
,
M.
, 2014
, “
Study of Finite Thermal Waves in a Magneto-Thermoelastic Rotating Medium
,” J. Therm. Stresses
,
37
(4
), pp. 405
–428
.10.1080/01495739.2013.87084727.
Lahiri
,
A.
,
Das
,
N. C.
,
Sarkar
,
S.
, and
Das
,
M.
, 2009
, “
Matrix Method of Solution of Coupled Differential Equations and Its Applications in Generalized Thermoelasticity
,” Bull. Cal. Math. Soc.
,
101
(6
), pp. 571
–590
.28.
Zakian
,
V.
, 1969
, “
Numerical Inversion of Laplace Transforms
,” Electron. Lett.
,
5
(6
), pp. 120
–121
.10.1049/el:1969009029.
Pal
,
P.
,
Das
,
P.
, and
Kanoria
,
M.
, 2015
, “
Magneto-Thermoelastic Response in a Functionally Graded Rotating Medium Due to a Periodically Varying Heat Source
,” Acta Mech.
,
226
(7
), pp. 2103
–2120
.10.1007/s00707-015-1301-y30.
Ezzat
,
M. A.
, and
Youssef
,
H. M.
, 2005
, “
Generalized Magneto-Thermoelasticity in a Perfectly Conducting Medium
,” Int. J. Solids Struct.
,
42
(24–25
), pp. 6319
–6334
.10.1016/j.ijsolstr.2005.03.06531.
Sarkar
,
N.
, 2014
, “
Generalized Magneto-Thermoelasticity With Modified Ohms Law Under Three Theories
,” Comput. Math. Model.
,
25
(4
), pp. 544
–564
.10.1007/s10598-014-9248-832.
Gangopadhyaya
,
N.
,
Roy
,
S.
,
Sahoo
,
M.
, and
Roychowdhury
,
S.
, 2018
, “
Eigenvalue Approach on Generalized Thermoelastic Interactions of a Layer
,” Int. J. Math. Trends Tech.
,
54
(3
), pp. 240
–252
.10.14445/22315373/IJMTT-V54P527Copyright © 2019 by ASME
You do not currently have access to this content.