Abstract

An effort has been made to numerically study the interactions between the vapor films generating from multiple heated cylinders placed in a saturated water pool with a view to understand the influence of neighboring interface on growth of vapor films. Lagrangian smoothed particle hydrodynamics (SPH) has been used for domain discretization and interface reconstruction. Unconstrained growth of vapor film around a cylinder is simulated first and the nature of vapor dynamics has been taken as a base case for the study of interaction patterns. Vapor growth has been understood through temporal phase contours, azimuthal thickness variation, and trajectory of the centroid of the vapor mass. It has been shown that the presence of cylinder in vertical neighborhood results in suppression of vapor film generating from the bottom cylinder, whereas, the vapor films generating from two cylinders placed in horizontal neighborhood experience a horizontal shift. Studies have also been made to observe multidirectional interactions of vapor films with heated cylinders placed in an inline array, vertically staggered and horizontally staggered arrangements. It has been found that the highest deviation from unconstrained growth occurs in case of the center cylinder in a horizontally staggered arrangement as compared to others. Mutual interaction coefficient and indices are proposed to judge the best possible arrangement in case of a requirement for placement of stacked cylinders.

References

1.
Lee
,
H. C.
,
Do Oh
,
B.
,
Bae
,
S. W.
, and
Kim
,
M. H.
,
2003
, “
Single Bubble Growth in Saturated Pool Boiling on a Constant Wall Temperature Surface
,”
Int. J. Multiphase Flow
,
29
(
12
), pp.
1857
1874
.10.1016/j.ijmultiphaseflow.2003.09.003
2.
Hetsroni
,
G.
,
Mosyak
,
A.
,
Pogrebnyak
,
E.
,
Sher
,
I.
, and
Segal
,
Z.
,
2006
, “
Bubble Growth in Saturated Pool Boiling in Water and Surfactant Solution
,”
Int. J. Multiphase Flow
,
32
(
2
), pp.
159
182
.10.1016/j.ijmultiphaseflow.2005.10.002
3.
Maurus
,
R.
, and
Sattelmayer
,
T.
,
2006
, “
Bubble and Boundary Layer Behaviour in Subcooled Flow Boiling
,”
Int. J. Therm. Sci.
,
45
(
3
), pp.
257
268
.10.1016/j.ijthermalsci.2004.05.006
4.
Yang
,
C.
,
Wu
,
Y.
,
Yuan
,
X.
, and
Ma
,
C.
,
2000
, “
Study on Bubble Dynamics for Pool Nucleate Boiling
,”
Int. J. Heat Mass Transfer
,
43
(
2
), pp.
203
206
.10.1016/S0017-9310(99)00132-5
5.
Das
,
A. K.
,
Das
,
P. K.
, and
Saha
,
P.
,
2006
, “
Heat Transfer During Pool Boiling Based on Evaporation From Micro and Macrolayer
,”
Int. J. Heat Mass Transfer
,
49
(
19–20
), pp.
3487
3499
.10.1016/j.ijheatmasstransfer.2006.02.050
6.
Son
,
G.
,
Dhir
,
V. K.
, and
Ramanujapu
,
N.
,
1999
, “
Dynamics and Heat Transfer Associated With a Single Bubble During Nucleate Boiling on a Horizontal Surface
,”
ASME J. Heat Transfer
,
121
(
3
), pp.
623
631
.10.1115/1.2826025
7.
Taylor
,
P.
,
Kunkelmann
,
C.
, and
Stephan
,
P.
,
2009
, “
CFD Simulation of Boiling Flows Using the Volume-of-Fluid Method Within OpenFOAM, Numerical Heat Transfer—Part A: Applications
,”
An Int. J. Comput. Methodol.
,
56
(
8
), pp.
631
646
.10.1080/10407780903423908
8.
Lucy
,
L. B.
,
1977
, “
A Numerical Approach to the Testing of the Fission Hypothesis
,”
Astron. J.
,
82
(
12
), pp.
1013
1024
.10.1086/112164
9.
Gingold
,
R. A.
, and
Monaghan
,
J. J.
,
1977
, “
Smoothed Particle Hydrodynamics: Theory and Application to Non-Spherical Stars
,”
Mon. Not. R. Astron. Soc.
,
181
(
3
), pp.
375
389
.10.1093/mnras/181.3.375
10.
Monaghan
,
J. J.
,
1992
, “
Smoothed Particle Hydrodynamics
,”
Annu. Rev. Astron. Astrophys.
,
30
(
1
), pp.
543
574
.10.1146/annurev.aa.30.090192.002551
11.
Colagrossi
,
A.
, and
Landrini
,
M.
,
2003
, “
Numerical Simulation of Interfacial Flows by Smoothed Particle Hydrodynamics
,”
J. Comput. Phys.
,
191
(
2
), pp.
448
475
.10.1016/S0021-9991(03)00324-3
12.
Grenier
,
N.
,
Antuono
,
M.
,
Colagrossi
,
A.
,
Le Touzé
,
D.
, and
Alessandrini
,
B.
,
2009
, “
An Hamiltonian Interface SPH Formulation for Multi-Fluid and Free Surface Flows
,”
J. Comput. Phys.
,
228
(
22
), pp.
8380
8393
.10.1016/j.jcp.2009.08.009
13.
Das
,
A. K.
, and
Das
,
P. K.
,
2015
, “
Modeling of Liquid—Vapor Phase Change Using Smoothed Particle Hydrodynamics
,”
J. Comput. Phys.
,
303
, pp.
125
145
.10.1016/j.jcp.2015.09.026
14.
Yang
,
X.
, and
Kong
,
S.
,
2017
, “
A Smoothed Particle Hydrodynamics Method for Evaporating Multiphase Flows
,”
Phys. Rev. E
,
96
(
3
), p.
033309
.10.1103/PhysRevE.96.033309
15.
Kumar
,
S.
,
Mohanty
,
B.
, and
Gupta
,
S. C.
,
2002
, “
Boiling Heat Transfer From a Vertical Row of Horizontal Tubes
,”
Int. J. Heat Mass Transfer
,
45
(
18
), pp.
3857
3864
.10.1016/S0017-9310(01)00360-X
16.
Gupta
,
A.
,
2005
, “
Enhancement of Boiling Heat Transfer in a 5X3 Tube Bundle
,”
Int. J. Heat Mass Transfer
,
48
(
18
), pp.
3763
3772
.10.1016/j.ijheatmasstransfer.2005.03.023
17.
Ahmadpour
,
A.
,
Rahim
,
S. M. A. N.
, and
Meyer
,
J. P.
,
2018
, “
Numerical Investigation of Pool Boiling on a Staggered Tube Bundle for Different Working Fluids
,”
Int. J. Multiphase Flow
,
104
, pp.
89
102
.10.1016/j.ijmultiphaseflow.2018.03.008
18.
Wu
,
J.
,
Yu
,
S.-T.
, and
Jiang
,
B.-N.
,
1998
, “
Simulation of Two-Fluid Flows by the Least-Squares Finite Element Method Using a Continuum Surface Tension Model
,”
Int. J. Numer. Methods Eng.
,
42
(
4
), pp.
583
600
.10.1002/(SICI)1097-0207(19980630)42:4<583::AID-NME341>3.0.CO;2-M
19.
Litvinov
,
S.
,
Hu
,
X. Y.
, and
Adams
,
N. A.
,
2015
, “
Towards Consistence and Convergence of Conservative SPH Approximations
,”
J. Comput. Phys.
,
301
, pp.
394
401
.10.1016/j.jcp.2015.08.041
20.
Fatehi
,
R.
, and
Manzari
,
M. T.
,
2011
, “
Error Estimation in Smoothed Particle Hydrodynamics and a New Scheme for Second Derivatives
,”
Comput. Math. Appl.
,
61
(
2
), pp.
482
498
.10.1016/j.camwa.2010.11.028
21.
Deep
,
A.
,
Meena
,
C. S.
, and
Das
,
A. K.
,
2017
, “
Interaction of Asymmetric Films Around Boiling Cylinder Array: Homogeneous Interface to Chaotic Phenomenon
,”
ASME J. Heat Transfer
,
139
(
4
), p.
041502
.10.1115/1.4035312
22.
Tso
,
C. P.
,
Low
,
H. G.
, and
Ng
,
S. M.
,
1990
, “
Pool Film Boiling From Spheres to Saturated and Subcooled Liquids of Freon-12 and Freon-22
,”
Int. J. Heat Fluid Flow
,
11
(
2
), pp.
154
159
.10.1016/0142-727X(90)90010-9
You do not currently have access to this content.