Abstract

A numerical method was used to study the effect of the broken rib locations on the heat transfer and flow structure in the latticework duct with various rotational numbers. The latticework duct had eleven subchannels on both the pressure side and the suction side. The crossing angle for each subchannel was 45 deg. The numerical studies were conducted with five different broken rib locations and six rotational numbers (0–0.5). The Reynolds number was fixed as 44,000. The flow structure, wall shear stress, and Nusselt number distributions were analyzed. It was found that the upward spiral flow and helical flow dominated the flow structure in the latticework duct. In addition, the impingement region (at the beginning of the subchannel) induced by the upward spiral flow was responsible for the high Nusselt number and wall shear stress. After adoption of the broken rib in the latticework duct, the Nusselt number was increased by 6.12% on the pressure endwall surface and increased by 6.02% on the rib surface compared to the traditional latticework duct. As the rotational number was increased, the Nusselt number on the pressure endwall surface was decreased by up to 5.4%. However, the high rotational number enhanced the heat transfer on the suction side. The high rotational number also decreased the friction factor in the latticework duct. Furthermore, the overall thermal performance was increased by 12.12% after adoption of the broken ribs on both the turn region and the impingement region.

References

1.
Mohamed
,
A.
,
Hoettiba
,
R.
, and
Saif
,
A. M.
,
2011
, “
The Effect of the Corrugation Rib Angle of Attack on the Fluid Flow and Heat Transfer Characteristics Inside Corrugated Ribbed Passage
,”
ASME J. Heat Transfer
,
133
(
8
), p.
081901
.10.1115/1.4003668
2.
Du
,
W.
,
Luo
,
L.
,
Wang
,
S.
, and
Zhang
,
X.
,
2019
, “
Flow Structure and Heat Transfer Characteristics in a 90-Deg Turned Pin Fined Duct With Different Dimple/Protrusion Depths
,”
Appl. Therm. Eng.
,
146
, pp.
826
842
.10.1016/j.applthermaleng.2018.10.052
3.
Luo
,
L.
,
Zhao
,
Z.
,
Kan
,
X.
,
Qiu
,
D.
,
Wang
,
S.
, and
Wang
,
Z.
,
2019
, “
On the Heat Transfer and Flow Structures Characteristics of Turbine Blade Tip Underside With Dirt Purge Holes at Different Locations by Using Topological Analysis
,”
ASME J. Turbomach.
,
141
(
7
), p.
071004
.10.1115/1.4042654
4.
An
,
B. T.
, and
Liu
,
J. J.
,
2018
, “
Numerical Investigation on Film Cooling Performance of Fusiform Diffusion Holes
,”
ASME J. Heat Transfer
,
140
(
12
), p.
122201
.10.1115/1.4041047
5.
Amano
,
R.
, and
Sunden
,
B.
,
2008
,
Thermal Engineering in Power Systems
,
WIT Press
,
Southampton, UK
, pp.
208
213
.
6.
Gorelov
,
V.
,
Goikhenberg
,
M.
, and
Malkov
,
V.
,
1990
, “
The Investigation of Heat Transfer in Cooled Blades of Gas Turbines
,”
AIAA
Paper No. AIAA-90-2144. 10.2514/6.1990-2144
7.
Gillespie
,
D. R. H.
,
Ireland
,
P. T.
,
Dailey
,
G. M.
, and
Royce
,
R.
,
2000
, “
Detailed Flow and Heat Transfer Coefficient Measurements in a Model of an Internal Cooling Geometry Employing Orthogonal Intersecting Channels
,”
ASME
Paper No. 2000-GT-0653. 10.1115/2000-GT-0653
8.
Bunker
,
R. S.
,
2004
, “
Latticework (Vortex) Cooling Effectiveness—Part 1: Stationary Channel Experiments
,”
ASME
Paper No. GT2004-54157. 10.1115/GT2004-54157
9.
Acharya
,
S.
,
Zhou
,
F.
,
Lagrone
,
J.
,
Mahmood
,
G.
, and
Bunker
,
R. S.
,
2005
, “
Latticework (Vortex) Cooling Effectiveness: Rotating Channel Experiments
,”
ASME J. Turbomach.
,
127
(
3
), pp.
471
478
.10.1115/1.1860381
10.
Saha
,
K.
,
Guo
,
S.
,
Acharya
,
S.
, and
Nakamata
,
C.
,
2008
, “
Heat Transfer and Pressure Measurements in a Lattice-Cooled Trailing Edge of a Turbine Airfoil
,”
ASME
Paper No. GT2008-51324. 10.1115/GT2008-51324
11.
Oh
,
I. T.
,
Kim
,
K. M.
,
Lee
,
D. H.
,
Park
,
J. S.
, and
Cho
,
H. H.
,
2011
, “
Local Heat/Mass Transfer and Friction Loss Measurement in a Rotating Matrix Cooling Channel
,”
ASME J. Heat Trans.
,
134
(
1
), p.
011901
.10.1115/1.4004853
12.
Saha
,
K.
,
Acharya
,
S.
, and
Nakamata
,
C.
,
2013
, “
Heat Transfer Enhancement and Thermal Performance of Lattice Structures for Internal Cooling of Airfoil Trailing Edges
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
1
), p.
011001
.10.1115/1.4007277
13.
Carcasci
,
C.
,
Facchini
,
B.
,
Pievaroli
,
M.
,
Tarchi
,
L.
,
Ceccherini
,
A.
, and
Innocenti
,
L.
,
2015
, “
Heat Transfer and Pressure Drop Measurements on Rotating Matrix Cooling Geometries for Airfoil Trailing Edges
,”
ASME
Paper No. GT2015-42594. 10.1115/GT2015-42594
14.
Tsuru
,
T.
,
Ishida
,
K.
,
Fujita
,
J.
, and
Takeishi
,
K.
,
2019
, “
Three-Dimensional Visualization of Flow Characteristics Using a Magnetic Resonance Imaging (MRI) in a Lattice Cooling Channel
,”
ASME J. Turbomach.
,
141
(
6
), p.
061003
.10.1115/1.4041908
15.
Hagari
,
T.
, and
Ishida
,
K.
,
2013
, “
Numerical Investigation on Flow and Heat Transfer in a Lattice (Matrix) Cooling Channel
,”
ASME
Paper No. GT2013-95412. 10.1115/GT2013-95412
16.
Bu
,
S.
,
Yang
,
L.
,
Qiu
,
H.
,
Luan
,
Y.
, and
Sun
,
H.
,
2017
, “
Effect of Sidewall Slots and Pin Fins on the Performance of Latticework Cooling Channel for Turbine Blades
,”
Appl. Therm. Eng.
,
117
, pp.
275
288
.10.1016/j.applthermaleng.2017.01.110
17.
Sun
,
H.
,
Sun
,
T.
,
Yang
,
L.
,
Bu
,
S.
, and
Luan
,
Y.
,
2018
, “
Effect of Bleed Hole on Internal Flow and Heat Transfer in Matrix Cooling Channel
,”
Appl. Therm. Eng.
,
136
, pp.
419
430
.10.1016/j.applthermaleng.2018.03.031
18.
Du
,
W.
,
Luo
,
L.
,
Wang
,
S.
,
Liu
,
J.
, and
Sunden
,
B.
,
2019
, “
Heat Transfer and Flow Structure in a Detached Latticework Duct
,”
Appl. Therm. Eng.
,
155
, pp.
24
39
.10.1016/j.applthermaleng.2019.03.148
19.
Bu
,
S.
,
Yang
,
Z.
,
Zhang
,
W.
,
Liu
,
H.
, and
Sun
,
H.
,
2016
, “
Research on the Thermal Performance of Matrix Cooling Channel With Response Surface Methodology
,”
Appl. Therm. Eng.
,
109
, pp.
75
86
.10.1016/j.applthermaleng.2016.08.005
20.
Han
,
J. C.
, and
Zhang
,
Y. M.
,
1992
, “
High Performance Heat Transfer Ducts With Parallel Broken and V-Shaped Broken Ribs
,”
Int. J. Heat Mass Transfer
,
35
(
2
), pp.
513
523
.10.1016/0017-9310(92)90286-2
21.
Pitak
,
P.
,
Petpices
,
E. A.
,
Withada
,
J.
, and
Smith
,
E. A.
,
2016
, “
Turbulent Heat Transfer and Pressure Loss in a Square Channel With Discrete Broken V-Rib Turbulators
,”
J. Hydrodyn.
,
28
(
2
), pp.
275
283
.10.1016/S1001-6058(16)60629-7
22.
Hans
,
V. S.
,
Gill
,
R. S.
, and
Singh
,
S.
,
2017
, “
Heat Transfer and Friction Factor Correlations for a Solar Air Heater Duct Roughened Artificially With Broken Arc Ribs
,”
Exp. Therm. Fluid Sci.
,
80
, pp.
77
89
.10.1016/j.expthermflusci.2016.07.022
23.
Luan
,
Y.
,
Bu
,
S.
,
Sun
,
H.
, and
Sun
,
T.
,
2016
, “
Numerical Investigation on Flow and Heat Transfer in Matrix Cooling Channels for Turbine Blades
,”
ASME
Paper No. GT2016-56279. 10.1115/GT2016-56279
24.
Sleiti
,
A. K.
, and
Kapat
,
J. S.
,
2005
, “
Fluid Flow and Heat Transfer in Rotating Curved Duct at High Rotation and Density Ratios
,”
ASME J. Turbomach.
,
127
(
4
), pp.
659
667
.10.1115/1.2019276
25.
Luo
,
L.
,
Du
,
W.
,
Wang
,
S.
,
Wu
,
W.
, and
Zhang
,
X.
,
2019
, “
Multi-Objective Optimization of the Dimple/Protrusion Channel With Pin Fins for Heat Transfer Enhancement
,”
Int. J. Numer. Methods Heat Fluid Flow
,
29
(
2
), pp.
790
813
.10.1108/HFF-05-2018-0194
26.
Du
,
W.
,
Luo
,
L.
,
Wang
,
S.
, and
Zhang
,
X.
,
2018
, “
Effect of the Dimple Location and Rotating Number on the Heat Transfer and Flow Structure in a Pin Finned Channel
,”
Int. J. Heat Mass Transfer
,
127
, pp.
111
129
.10.1016/j.ijheatmasstransfer.2018.08.045
27.
Du
,
W.
,
Luo
,
L.
,
Wang
,
S.
,
Bi
,
S.
, and
Zhang
,
X.
,
2019
, “
Heat Transfer Characteristics in a Rotating Pin Finned Duct With Different Protrusion Locations
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
6
), p.
061009
.10.1115/1.4043262
28.
Wang
,
S.
,
Du
,
W.
,
Luo
,
L.
,
Qiu
,
D.
,
Zhang
,
X.
, and
Li
,
S.
,
2018
, “
Flow Structure and Heat Transfer Characteristics of a Dimpled Wedge Channel With a Bleed Hole in Dimple at Different Orientations and Locations
,”
Int. J. Heat Mass Transfer
,
117
, pp.
1216
1230
.10.1016/j.ijheatmasstransfer.2017.10.087
You do not currently have access to this content.