In this paper, four types of plate-fin heat exchangers applied in 200 kW microturbines are investigated. Multi-objective optimization algorithm, NSGA-II (nondominated sorting genetic algorithm (GA)), is employed to maximize the efficiency of the recuperator and minimize its total cost, simultaneously. Feasible ranges of pressure drop, Reynolds number, and recuperator efficiency are obtained according to a penalty function. The optimizations are conducted for rectangular fin, triangular fin, louver fin, and offset strip fin recuperators with cross and counter flow arrangements. The results of each optimization problem are presented as a set of designs, called “Pareto-optimal solutions.” Afterward, for the designs, cycle efficiency and net present value (NPV) are compared based on technical and economic criteria, respectively. Maximum cycle efficiency occurring in a recuperator with louver fin and counter flow arrangement is found to be 38.17%. Finally, the optimum designs are compared based on nondominated sorting concept leading to the optimal solutions.

References

1.
Shah
,
R. K.
,
2005
, “
Compact Heat Exchangers for Microturbines
,”
Fifth Conference on Enhanced, Compact and Ultra-Compact Heat Exchangers: Science, Engineering and Technology
, Whistler, BC, Canada, Sept. 11–16, pp.
247
257
.
2.
Omatete
,
O. O.
,
Maziasz
,
P. J.
,
Pint
,
B. A.
, and
Stinton
,
D. P.
,
2000
, “
Assessment of Recuperator Materials for Microturbines
,” Oak Ridge National Laboratory, Oak Ridge, TN, Report No.
ORNL/TM-2000/304
.
3.
McDonald
,
C. F.
,
2003
, “
Recuperator Considerations for Future Higher Efficiency Microturbines
,”
Appl. Therm. Eng.
,
23
(
12
), pp.
1463
1487
.
4.
Shah
,
R. K.
, and
Sekulic
,
D. P.
,
2003
,
Fundamentals of Heat Exchanger Design
,
Wiley
,
New York
.
5.
Manglik
,
R. M.
, and
Bergles
,
A. E.
,
1995
, “
Heat Transfer and Pressure Drop Correlations for the Rectangular Offset Strip Fin Compact Heat Exchanger
,”
Exp. Therm. Fluid Sci.
,
10
(
2
), pp.
171
180
.
6.
Chang
,
Y.
, and
Wang
,
C. A.
,
1997
, “
Generalized Heat Transfer Correlation for Louver Fin Geometry
,”
Int. J. Heat Mass Transfer
,
40
(
3
), pp.
533
544
.
7.
Chang
,
Y.
,
Hsu
,
K.
,
Lin
,
Y.
, and
Wang
,
C.
,
2000
, “
A Generalized Friction Correlation for Louver Fin Geometry
,”
Int. J. Heat Mass Transfer
,
43
(
12
), pp.
2237
2243
.
8.
Traverso
,
A.
, and
Massardo
,
A. F.
,
2005
, “
Optimal Design of Compact Recuperators for Microturbine Application
,”
Appl. Therm. Eng.
,
25
(
14
), pp.
2054
2071
.
9.
Qiuwang
,
W.
,
Hongxia
,
L.
,
Gongnan
,
X.
,
Min
,
Z.
,
Laiqin
,
L.
, and
ZhenPing
,
F.
,
2007
, “
Genetic Algorithm Optimization for Primary Surfaces Recuperator of Microturbine
,”
ASME J. Eng. Gas Turbines Power
,
129
(
2
), pp.
436
442
.
10.
Wen, J., Yang, H., Tong, X., Li, K., Wang, S., and Li, Y.,
2016
, “
Optimization Investigation on Configuration Parameters of Serrated Fin in Plate-Fin Heat Exchanger Using Genetic Algorithm
,”
Int. J. Therm. Sci.
,
101
, pp.
116
125
.
11.
Peng
,
H.
, and
Ling
,
X.
,
2008
, “
Optimal Design Approach for the Plate-Fin Heat Exchangers Using Neural Networks Cooperated With Genetic Algorithms
,”
Appl. Therm. Eng.
,
28
(
5
), pp.
642
650
.
12.
Sanaye
,
S.
, and
Hajabdollahi
,
H.
,
2010
, “
Thermal-Economic Multi-Objective Optimization of Plate Fin Heat Exchanger Using Genetic Algorithm
,”
Appl. Energy
,
87
(
6
), pp.
1893
1902
.
13.
Ahmadi
,
P.
,
Hajabdollahi
,
H.
, and
Dincer
,
I.
,
2011
, “
Cost and Entropy Generation Minimization of a Cross-Flow Plate Fin Heat Exchanger Using Multi-Objective Genetic Algorithm
,”
ASME J. Heat Transfer
,
133
(
2
), p.
021801
.
14.
Zhang, L., Yang, C., and Zhou, J.,
2010
, “
A Distributed Parameter Model and its Application in Optimizing the Plate-Fin Heat Exchanger Based on the Minimum Entropy Generation
,”
Int. J. Therm. Sci.
,
49
(8), pp.
1427
1436
.
15.
Soares
,
C.
,
2007
,
Microturbines: Applications for Distributed Energy Systems
,
Butterworth-Heinemann
,
Oxford, UK
.
16.
Dong
,
J.
,
Chen
,
J.
,
Chen
,
Z.
,
Zhang
,
W.
, and
Zhou
,
Y.
,
2007
, “
Heat Transfer and Pressure Drop Correlations for the Multi-Louvered Fin Compact Heat Exchangers
,”
Energy Convers. Manage.
,
48
(
5
), pp.
1506
1515
.
17.
Kays
,
W. M.
, and
London
,
A. L.
,
1984
,
Compact Heat Exchangers
, 3rd ed.,
McGraw-Hill
,
New York
.
18.
Kaviri
,
A. G.
,
Jaafar
,
M. N. M.
, and
Lazim
,
T. M.
,
2012
, “
Modeling and Multi-Objective Exergy Based Optimization of a Combined Cycle Power Plant Using a Genetic Algorithm
,”
Energy Convers. Manage.
,
58
, pp.
94
103
.
19.
Bejan
,
A.
,
Tsatsaronis
,
G.
, and
Moran
,
M.
,
1996
,
Thermal Design and Optimization
,
Wiley
,
New York
.
20.
EEBPP,
2001
,
Compact Heat Exchangers: A Training Package for Engineers
, Energy Efficiency Best Practice Programme, London, pp.
160
185
.
21.
Wang
,
Z.
, and
Li
,
Y.
,
2015
, “
Irreversibility Analysis for Optimization Design of Plate Fin Heat Exchangers Using a Multi-Objective Cuckoo Search Algorithm
,”
Energy Convers. Manage.
,
101
, pp.
126
135
.
22.
Sadeghi
,
S.
,
Saffari
,
H.
, and
Bahadormanesh
,
N.
,
2015
, “
Optimization of a Modified Double-Turbine Kalina Cycle by Using Artificial Bee Colony Algorithm
,”
Appl. Therm. Eng.
,
91
, pp.
19
32
.
23.
Saffari
,
H.
,
Sadeghi
,
S.
,
Khoshzat
,
M.
, and
Mehregan
,
P.
,
2016
, “
Thermodynamic Analysis and Optimization of a Geothermal Kalina Cycle System Using Artificial Bee Colony Algorithm
,”
Renewable Energy
,
89
, pp.
154
167
.
24.
Karaboga
,
D.
, and
Akay
,
B.
,
2009
, “
A Comparative Study of Artificial Bee Colony Algorithm
,”
Appl. Math. Comput.
,
214
(
1
), pp.
108
132
.
25.
Feng
,
Y.
,
Zhang
,
Y.
,
Li
,
B.
,
Yang
,
J.
, and
Shi
,
Y.
,
2015
, “
Comparison Between Regenerative Organic Rankine Cycle (RORC) and Basic Organic Rankine Cycle (BORC) Based on Thermoeconomic Multi-Objective Optimization Considering Exergy Efficiency and Levelized Energy Cost (LEC)
,”
Energy Convers. Manage.
,
96
, pp.
58
71
.
26.
Sadeghzadeh
,
H.
,
Ehyaei
,
M. A.
, and
Rosen
,
M. A.
,
2015
, “
Techno-Economic Optimization of a Shell and Tube Heat Exchanger by Genetic and Particle Swarm Algorithms
,”
Energy Convers. Manage.
,
93
, pp.
84
91
.
27.
Golberg, D. E., and Holland, J. H.,
1988
, “
Genetic Algorithms and Machine Learning
,”
Mach. Learn.
,
3
(2), pp.
95
99
.
28.
Holland, J. H.,
1992
, “
Adaptation in Natural and Artificial Systems
,”
An Introductory Analysis With Applications to Biology, Control, and Artificial Intelligence
, MIT Press, London.
29.
Schaffer
,
J. D.
,
1985
, “
Multiple Objective Optimization With Vector Evaluated Genetic Algorithms
,”
First International Conference on Genetic Algorithms
, Pittsburgh, PA, July 24–26, pp.
93
100
.
30.
Srinivas
,
N.
, and
Deb
,
K.
,
1994
, “
Multiobjective Optimization Using Nondominated Sorting in Genetic Algorithms
,”
IEEE Trans. Evol. Comput.
,
2
(
3
), pp.
221
248
.
31.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.
32.
Deb
,
K.
, and
Goel
,
T.
,
2001
, “
Controlled Elitist Non-Dominated Sorting Genetic Algorithms for Better Convergence
,”
First International Conference on Evolutionary Multi-Criterion Optimization
(EMO), Zurich, Switzerland, Mar. 7–9, pp.
385
399
.
33.
Ho
,
C. Y.
, and
Chu
,
T. K.
,
1977
, “
Electrical Resistivity and Thermal Conductivity of Nine Selected AISI Stainless Steels
,” Thermophysical and Electronic Properties Information Analysis Center, Purdue University, West Lafayette, IN, Report No.
CINDAS Report 45
.
34.
Bergman
,
T. L.
,
Lavine
,
A. S.
, and
Incropera
,
F. P.
,
2011
,
Introduction to Heat Transfer
,
Wiley
,
New York
.
You do not currently have access to this content.