Spray cooling is critical in many industrial applications to extract large heat fluxes from metal parts, such as hypervapotron in nuclear fusion reactors, heat treatment of steel plates in run-out table (ROT), electronic parts, and many more. The objective of the present study is to enhance the heat dissipation in transition and nucleate boiling regimes using an air-atomized water spray with water-based copper nanofluid as a coolant. The nanoparticle used in this study is energetic metal Cu, which has been prepared by mechanical milling (MM) process. The nanofluid has been prepared by suspending 0.1 vol. % Cu nanoparticles in water, with or without a dispersing agent (surfactant). The effect of type of dispersing agent on augmentation of boiling heat transfer has also been studied. The spray cooling experiments are conducted on a 6 mm thick stainless steel plate of initial temperature above 900 °C. The transient surface heat flux and temperatures are estimated using commercial inverse heat conduction software named intemp. The experimental results illustrated that transition and nucleate boiling heat flux as well as critical heat flux (CHF) increased significantly using nanofluid spray. A maximum ultrafast cooling (UFC) rate of 267 °C/s is achieved using surfactant-based nanofluid spray, which is 31.53% and 59.88% higher as compared to the nanofluid without any dispersant and pure water sprays, respectively. Overall, the surfactant-based copper nanofluid spray can serve as a better coolant on the ROT of steel processing industry.

References

1.
Chester
,
N. L.
,
Wells
,
M. A.
, and
Prodanovic
,
V.
,
2012
, “
Effect of Inclination Angle and Flow Rate on the Heat Transfer During Bottom Jet Cooling of a Steel Plate
,”
ASME J. Heat Transfer
,
134
(
12
), p.
122201
.10.1115/1.4007127
2.
O'Hanley
,
H.
,
Coyle
,
C.
,
Buongiorno
,
J.
,
Mckrell
,
T.
,
Hu
,
L. W.
,
Rubner
,
M.
, and
Cohen
,
R.
,
2013
, “
Separate Effects of Surface Roughness, Wettability, and Porosity on the Boiling Critical Heat Flux
,”
Appl. Phys. Lett.
,
103
(
2
), p.
024102
.10.1063/1.4813450
3.
Barrett
,
T. R.
,
Robinson
,
S.
,
Flinders
,
K.
,
Sergis
,
A.
, and
Hardalupas
,
Y.
,
2013
, “
Investigating the Use of Nanofluids to Improve High Heat Flux Cooling Systems
,”
Fusion Eng. Des.
,
88
(
9–10
), pp.
2594
2597
.10.1016/j.fusengdes.2013.03.058
4.
Mourgues
,
A.
,
Hourtané
,
V.
,
Muller
,
T.
, and
Caron-Charles
,
M.
,
2013
, “
Boiling Behaviors and Critical Heat Flux on a Horizontal and Vertical Plate in Saturated Pool Boiling With and Without ZnO Nanofluid
,”
Int. J. Heat Mass Transfer
,
57
(
2
), pp.
595
607
.10.1016/j.ijheatmasstransfer.2012.10.073
5.
Mohapatra
,
S. S.
,
Ravikumar
,
S. V.
,
Verma
,
A.
,
Pal
,
S. K.
, and
Chakraborty
,
S.
,
2013
, “
Experimental Investigation of Effect of a Surfactant to Increase Cooling of Hot Steel Plates by a Water Jet
,”
ASME J. Heat Transfer
,
135
(
3
), p.
032101
.10.1115/1.4007878
6.
Gradeck
,
M.
,
Ouattara
,
A.
,
Maillet
,
D.
,
Gardin
,
P.
, and
Lebouché
,
M.
,
2011
, “
Heat Transfer Associated to a Hot Surface Quenched by a Jet of Oil-in-Water Emulsion
,”
Exp. Therm. Fluid Sci.
,
35
(
5
), pp.
841
847
.10.1016/j.expthermflusci.2010.07.002
7.
Cheng
,
W.
,
Xie
,
B.
,
Han
,
F.
, and
Chen
,
H.
,
2013
, “
An Experimental Investigation of Heat Transfer Enhancement by Addition of High-Alcohol Surfactant (HAS) and Dissolving Salt Additive (DSA) in Spray Cooling
,”
Exp. Therm. Fluid Sci.
,
45
, pp.
198
202
.10.1016/j.expthermflusci.2012.11.005
8.
Mohapatra
,
S. S.
,
Ravikumar
,
S. V.
,
Jha
,
J. M.
,
Singh
,
A. K.
,
Bhattacharya
,
C.
,
Pal
,
S. K.
, and
Chakraborty
,
S.
,
2014
, “
Ultra Fast Cooling of Hot Steel Plate by Air Atomized Spray With Salt Solution
,”
Heat Mass Transfer
,
50
(
5
), pp.
587
601
.10.1007/s00231-013-1260-6
9.
Ravikumar
,
S. V.
,
Jha
,
J. M.
,
Tiara
,
A. M.
,
Pal
,
S. K.
, and
Chakraborty
,
S.
,
2014
, “
Experimental Investigation of Air-Atomized Spray With Aqueous Polymer Additive for High Heat Flux Applications
,”
Int. J. Heat Mass Transfer
,
72
, pp.
362
377
.10.1016/j.ijheatmasstransfer.2014.01.024
10.
Herman
,
J. C.
,
2001
, “
Impact of New Rolling and Cooling Technologies on Thermomechanically Processed Steels
,”
Ironmaking Steelmaking
,
28
(
2
), pp.
159
163
.10.1179/030192301677894
11.
Serajzadeh
,
S.
,
2004
, “
Modelling of Temperature History and Phase Transformations During Cooling of Steel
,”
J. Mater. Process. Technol.
,
146
(
3
), pp.
311
317
.10.1016/j.jmatprotec.2003.11.010
12.
Cornet
,
X.
, and
Herman
,
J. C.
,
2003
, “
Methods for Making a Multiphase Hot-Rolled Steel Strip
,” U.S. Patent No. 0041933 A1.
13.
Li
,
H. J.
,
Li
,
Z. L.
,
Guo
,
Y.
,
Wang
,
Z. D.
, and
Wang
,
G. D.
,
2013
, “
Development of New Generation Cooling Control System after Rolling in Hot Rolled Strip Based on UFC
,”
J. Iron Steel Res. Int.
,
20
(
7
), pp.
29
34
.10.1016/S1006-706X(13)60122-3
14.
Mohapatra
,
S. S.
,
Ravikumar
,
S. V.
,
Pal
,
S. K.
, and
Chakraborty
,
S.
,
2013
, “
Ultra Fast Cooling of a Hot Steel Plate by Using High Mass Flux Air Atomized Spray
,”
Steel Res. Int.
,
84
(
3
), pp.
229
236
.10.1002/srin.201200157
15.
Ravikumar
,
S.
,
Jha
,
J.
,
Mohapatra
,
S.
,
Sinha
,
A.
,
Pal
,
S.
, and
Chakraborty
,
S.
,
2013
, “
Experimental Study of the Effect of Spray Inclination on Ultrafast Cooling of a Hot Steel Plate
,”
Heat Mass Transfer
,
49
(
10
), pp.
1509
1522
.10.1007/s00231-013-1190-3
16.
Puschmann
,
F.
, and
Specht
,
E.
,
2004
, “
Transient Measurement of Heat Transfer in Metal Quenching With Atomized Sprays
,”
Exp. Therm. Fluid Sci.
,
28
(
6
), pp.
607
615
.10.1016/j.expthermflusci.2003.09.004
17.
Ravikumar
,
S. V.
,
Jha
,
J. M.
,
Sarkar
,
I.
,
Mohapatra
,
S. S.
,
Pal
,
S. K.
, and
Chakraborty
,
S.
,
2013
, “
Achievement of Ultrafast Cooling Rate in a Hot Steel Plate by Air-Atomized Spray With Different Surfactant Additives
,”
Exp. Therm. Fluid Sci.
,
50
, pp.
79
89
.10.1016/j.expthermflusci.2013.05.007
18.
Kim
,
S. J.
,
Bang
,
I. C.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
,
2007
, “
Surface Wettability Change During Pool Boiling of Nanofluids and Its Effect on Critical Heat Flux
,”
Int. J. Heat Mass Transfer
,
50
(
19–20
), pp.
4105
4116
.10.1016/j.ijheatmasstransfer.2007.02.002
19.
Rizkalla
,
A. A.
, and
Lefebvre
,
A. H.
,
1975
, “
Influence of Air and Liquid Properties of Airblast Atomization
,”
ASME J. Fluids Eng.
,
97
(
3
), pp.
316
320
.10.1115/1.3447309
20.
Bhattacharya
,
P.
,
Samanta
,
A. N.
, and
Chakraborty
,
S.
,
2009
, “
Spray Evaporative Cooling to Achieve Ultra Fast Cooling in Runout Table
,”
Int. J. Therm. Sci.
,
48
(
9
), pp.
1741
1747
.10.1016/j.ijthermalsci.2009.01.015
21.
Liu
,
Z.-H.
, and
Qiu
,
Y.-H.
,
2007
, “
Boiling Heat Transfer Characteristics of Nanofluids Jet Impingement on a Plate Surface
,”
Heat Mass Transfer
,
43
(
7
), pp.
699
706
.10.1007/s00231-006-0159-x
22.
Chakraborty
,
S.
,
Chakraborty
,
A.
,
Das
,
S.
,
Mukherjee
,
T.
,
Bhattacharjee
,
D.
, and
Ray
,
R. K.
,
2010
, “
Application of Water Based-TiO2 Nano-Fluid for Cooling of Hot Steel Plate
,”
ISIJ Int.
,
50
(
1
), pp.
124
127
.10.2355/isijinternational.50.124
23.
Mohapatra
,
S.
,
Ravikumar
,
S. V.
,
Ranjan
,
R.
,
Pal
,
S. K.
,
Singh
,
S. B.
, and
Chakraborty
,
S.
,
2014
, “
Ultra Fast Cooling and Its Effect on the Mechanical Properties of Steel
,”
ASME J. Heat Transfer
,
136
(
3
), p.
032101
.10.1115/1.4025638
24.
Trujillo
,
D. M.
, and
Busby
,
H. R.
,
1997
,
Practical Inverse Analysis in Engineering
,
CRC Press
,
Boca Raton, FL
.
25.
Trujillo
,
D. M.
, and
Busby
,
H. R.
,
1994
, “
Optimal Regularization of the Inverse-Heat Conduction Problem Using the L-Curve
,”
Int. J. Numer. Methods Heat Fluid Flow
,
4
(
5
), pp.
447
452
.10.1108/EUM0000000004048
26.
Wang
,
H.
,
Yu
,
W.
, and
Cai
,
Q.
,
2012
, “
Experimental Study of Heat Transfer Coefficient on Hot Steel Plate During Water Jet Impingement Cooling
,”
J. Mater. Process. Technol.
,
212
(
9
), pp.
1825
1831
.10.1016/j.jmatprotec.2012.04.008
27.
Karthik
,
V.
,
Ghosh
,
S.
, and
Pabi
,
S. K.
,
2013
, “
Effects of Bulk Stoichiometry and Surface State of NiAl Nano-Dispersoid on the Stability and Heat Transfer Characteristics of Water Based Nanofluid
,”
Exp. Therm. Fluid Sci.
,
48
, pp.
156
162
.10.1016/j.expthermflusci.2013.02.018
28.
Khorsand Zak
,
A.
,
Abd. Majid
,
W. H.
,
Abrishami
,
M. E.
, and
Yousefi
,
R.
,
2011
, “
X-Ray Analysis of ZnO Nanoparticles by Williamson–Hall and Size–Strain Plot Methods
,”
Solid State Sci.
,
13
(
1
), pp.
251
256
.10.1016/j.solidstatesciences.2010.11.024
29.
Williamson
,
G. K.
, and
Hall
,
W. H.
,
1953
, “
X-Ray Line Broadening From Filed Aluminium and Wolfram
,”
Acta Metall.
,
1
(
1
), pp.
22
31
.10.1016/0001-6160(53)90006-6
30.
Saterlie
,
M.
,
Sahin
,
H.
,
Kavlicoglu
,
B.
,
Liu
,
Y.
, and
Graeve
,
O.
,
2011
, “
Particle Size Effects in the Thermal Conductivity Enhancement of Copper-Based Nanofluids
,”
Nanoscale Res. Lett.
,
6
(
1
), pp.
1
7
.10.1186/1556-276X-6-217
31.
Murshed
,
S. M. S.
,
Tan
,
S. H.
, and
Nguyen
,
N. T.
,
2008
, “
Temperature Dependence of Interfacial Properties and Viscosity of Nanofluids for Droplet-Based Microfluidics
,”
J. Phys. D: Appl. Phys.
,
41
(
8
), p.
085502
.10.1088/0022-3727/41/8/085502
32.
Kumar
,
R.
, and
Milanova
,
D.
,
2009
, “
Effect of Surface Tension on Nanotube Nanofluids
,”
Appl. Phys. Lett.
,
94
(
7
), p.
073107
.10.1063/1.3085766
33.
Mitra
,
S.
,
Saha
,
S. K.
,
Chakraborty
,
S.
, and
Das
,
S.
,
2012
, “
Study on Boiling Heat Transfer of Water–TiO2 and Water–MWCNT Nanofluids Based Laminar Jet Impingement on Heated Steel Surface
,”
Appl. Therm. Eng.
,
37
, pp.
353
359
.10.1016/j.applthermaleng.2011.11.048
34.
Zuber
,
N.
,
1959
, “
Hydrodynamic Aspects of Boiling Heat Transfer
,” Ph.D. thesis, University of California, Los Angeles, CA.
35.
Ravikumar
,
S. V.
,
Jha
,
J. M.
,
Mohapatra
,
S. S.
,
Pal
,
S. K.
, and
Chakraborty
,
S.
,
2013
, “
Influence of Ultrafast Cooling on Microstructure and Mechanical Properties of Steel
,”
Steel Res. Int.
,
84
(
11
), pp.
1157
1170
.10.1002/srin.201200346
36.
Abernethy
,
R. B.
,
Benedict
,
R. P.
, and
Dowdell
,
R. B.
,
1985
, “
ASME Measurement Uncertainty
,”
ASME J. Fluids Eng.
,
107
(
2
), pp.
161
164
.10.1115/1.3242450
You do not currently have access to this content.