We studied experimentally the behavior of a single cold water droplet that falls onto a hot horizontal flat solid surface in the film boiling region. We found that when the droplet hits the surface (for the first time), three different regimes may occur. These regimes depend on the ratio of fluid's inertia and its surface tension (the Weber number, indicated as We) and on the surface temperature. For relatively low We numbers or surface temperatures, the droplet completely bounces back from the surface and no breakup occurs. For intermediate We numbers or surface temperatures, the spreading stage is faster and the droplet undergoes spreading and partial recession before it breaks up into bouncing small secondary droplets that leap inward and successively coalesce above the surface to form a single droplet once again. For high We numbers or surface temperatures, the spreading velocity is higher, the contact area with the surface is greater, and the liquid film thickness is smaller. Thus, during the expansion of the spreading stage, the droplet breaks up into bouncing small secondary droplets that uninterruptedly leap outward and travel independently. We also present the limiting conditions differentiating between the different behaviors found. This work shows droplet film boiling behaviors that are essentially different than droplet levitation on top of a thin vapor layer, as mainly assumed in theoretical models. We also observed that when a droplet hits the surface for the second, consecutive time (and on), the droplet behaves somewhat differently due to its preheating, very low impact velocity, different shape, spin, orientation, and the surface temperature. At the second impact on the surface (and on), the droplet can continue its bounce in a unique and different manner than in the first impact or it can explode violently to small secondary droplets. Both are unique and differentiating mainly by the droplet's shape and orientation at the exact moment of impact on the surface. Additionally, a rare and unique view of droplet–droplet collision during film boiling is presented. This type of collision behaves in a different way than other droplet–droplet collisions and compared to the adiabatic case of droplet–droplet collision on a nonheated surface. The behaviors found, presented, and discussed in this study change our view of the droplet–surface and droplet–droplet interactions that occur in spray cooling in the film boiling region.
Skip Nav Destination
Article navigation
Research-Article
Droplet First and Second Consecutive Impacts and Droplet–Droplet Collision on a Hot Surface in the Film Boiling Region
E. Kompinsky,
E. Kompinsky
1
Department of Mechanical Engineering,
e-mail: eitank44@gmail.com
Ben-Gurion University of the Negev
,Beer-Sheva 8410501
, Israel
e-mail: eitank44@gmail.com
1Corresponding author.
Search for other works by this author on:
E. Sher
E. Sher
Faculty of Aerospace Engineering,
Technion—Israel Institute of Technology
,Haifa 3200003
, Israel
Search for other works by this author on:
E. Kompinsky
Department of Mechanical Engineering,
e-mail: eitank44@gmail.com
Ben-Gurion University of the Negev
,Beer-Sheva 8410501
, Israel
e-mail: eitank44@gmail.com
E. Sher
Faculty of Aerospace Engineering,
Technion—Israel Institute of Technology
,Haifa 3200003
, Israel
1Corresponding author.
Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received April 26, 2014; final manuscript received February 1, 2015; published online February 25, 2015. Assoc. Editor: Sujoy Kumar Saha.
J. Heat Transfer. May 2015, 137(5): 051503 (13 pages)
Published Online: May 1, 2015
Article history
Received:
April 26, 2014
Revision Received:
February 1, 2015
Online:
February 25, 2015
Citation
Kompinsky, E., and Sher, E. (May 1, 2015). "Droplet First and Second Consecutive Impacts and Droplet–Droplet Collision on a Hot Surface in the Film Boiling Region." ASME. J. Heat Transfer. May 2015; 137(5): 051503. https://doi.org/10.1115/1.4029743
Download citation file:
Get Email Alerts
Cited By
Related Articles
Flow Visualization of Submerged Steam Jet in Subcooled Water
J. Heat Transfer (February,2016)
Air-Mist Heat Extraction and Visualization of Droplets–Surface Interactions From 60 to 1200 °C Under Steady-State Conditions
J. Heat Transfer (June,2018)
Heat Transfer and Boiling Crisis at Droplets Evaporation of Ethanol Water Solution
J. Heat Transfer (November,2016)
Boiling Performance of Graphene Oxide Coated Copper Surfaces at High Pressures
J. Heat Transfer (November,2017)
Related Proceedings Papers
Related Chapters
Numerical Simulation of Nucleate Spray Cooling: Effect of Droplet Impact on Bubble Growth and Heat Transfer in a Thin Liquid Film
Inaugural US-EU-China Thermophysics Conference-Renewable Energy 2009 (UECTC 2009 Proceedings)
Nucleation of Bubbles in Perfluoropentane Droplets Under Ultrasonic Excitation
Proceedings of the 10th International Symposium on Cavitation (CAV2018)
Liquid Cooled Systems
Thermal Management of Telecommunications Equipment