This paper presents an analytical investigation of the thermal transport in a parallel-plate channel comprised of superhydrophobic walls. An analytical solution is obtained for the thermally developing state, however, it is the condition far downstream from the entrance where the temperature field exhibits repeating periodic streamwise variation that is of primary interest here. The superhydrophobic walls considered in this paper exhibit alternating microribs and cavities positioned perpendicular to the flow direction and the transport scenario analyzed is that of constant wall heat flux through the rib surfaces with negligible thermal transport through the vapor cavity interface. Axial conduction is neglected in the analysis and the problem is one of Graetz flow with apparent slip-flow and periodicity of constant heating. Closed form solutions for the local Nusselt number and wall temperature are presented and are in the form of infinite series expansions. Previously, it has been shown that significant reductions in the overall frictional pressure drop can be expected relative to the classical smooth channel laminar flow. The present results reveal that the overall thermal transport is markedly influenced by the relative cavity region (cavity fraction), the relative rib/cavity module width, and the flow Peclet number. The following conclusions can be made regarding thermal transport for a constant heat flux channel exhibiting the superhydrophobic surfaces considered: (1) Increases in the cavity fraction lead to decreases in the average Nusselt number; (2) Increasing the relative rib/cavity module length yields a decrease in the average Nusselt number; and (3) as the Peclet number increases the average Nusselt number increases. For all parameters explored, the limiting upper bound on the fully developed average Nusselt number corresponds to the limiting case scenario of classical laminar flow through a smooth-walled channel with constant heat flux.

References

1.
Chen
,
W.
,
Fadeev
,
A. Y.
,
Hsieh
,
M. C.
,
Oner
,
D.
,
Youngblood
,
J.
, and
McCarthy
,
T. J.
,
1999
, “
Ultrahydrophobic and Ultralyophobic Surfaces: Some Comments and Examples
,”
Langmuir
,
15
, pp.
3395
3399
.10.1021/la990074s
2.
Bico
,
J.
,
Marzolin
,
C.
, and
Quéré
,
D.
,
1999
, “
Pearl Drops
,”
Europhys. Lett.
,
47
, pp.
220
226
.10.1209/epl/i1999-00548-y
3.
Bico
,
J.
,
Thiele
,
U.
, and
Quéré
,
D.
,
2002
, “
Wetting of Textured Surfaces
,”
Colloids Surf.
,
206
, pp.
41
46
.10.1016/S0927-7757(02)00061-4
4.
Bartolo
,
D.
,
Bouamrirene
,
F.
,
Verneuil
,
É.
,
Buguin
,
A.
,
Silberzan
,
P.
, and
Moulinet
,
S.
,
2006
, “
Bouncing or Sticky Droplets: Impalement Transitions on Superhydrophobic Micropatterned Surfaces
,”
Europhys. Lett.
,
74
, pp.
209
305
.10.1209/epl/i2005-10522-3
5.
Reyssat
,
M.
,
Pépin
,
A.
,
Marty
,
F.
,
Chen
,
Y.
, and
Quéré
,
D.
,
2006
, “
Bouncing Transitions on Mictrotextured Materials
,”
Europhys. Lett.
,
74
, pp.
306
312
.10.1209/epl/i2005-10523-2
6.
Wang
,
Z.
,
Lopez
,
C.
,
Hirsa
,
A.
, and
Koratkar
,
N.
,
2007
, “
Impact Dynamics and Rebound of Water Droplets on Superhydrophobic Carbon Nanotube Arrays
,”
Appl. Phys. Lett.
,
91
, p.
023105
.10.1063/1.2756296
7.
Maynes
,
D.
,
Johnson
,
M.
, and
Webb
,
B. W.
,
2011
, “
Free-Surface Liquid Jet Impingement on Rib Patterned Superhydrophobic Surfaces
,”
Phys. Fluids
,
23
, p.
052104
.10.1063/1.3593460
8.
Lauga
,
E.
, and
Stone
,
H.
,
2003
, “
Effective Slip in Pressure-Driven Stokes Flow
,”
J. Fluid Mech.
,
489
, pp.
55
77
.10.1017/S0022112003004695
9.
Ou
,
J.
, and
Rothstein
,
J. P.
,
2005
, “
Direct Velocity Measurements of the Flow Past Drag-Reducing Ultrahydrophobic Surfaces
,”
Phys. Fluids
,
17
, p.
103606
.10.1063/1.2109867
10.
Maynes
,
D.
,
Jeffs
,
K.
,
Woolford
,
B.
, and
Webb
,
B. W.
,
2007
, “
Laminar Flow in a Microchannel With Hydrophobic Surface Patterned Micro-Ribs Oriented Parallel to the Flow Direction
,”
Phys. Fluids
,
19
, p.
093606
.10.1063/1.2772880
11.
Davies
,
J.
,
Maynes
,
D.
,
Webb
,
B. W.
, and
Woolford
,
B.
,
2006
, “
Laminar Flow in a Microchannel With Superhydrophobic Walls Exhibiting Transverse Ribs
,”
Phys. Fluids
,
18
, p.
087110
.10.1063/1.2336453
12.
Ybert
,
C.
,
Barentin
,
C.
,
Cottin-Bizonne
,
C.
,
Joseph
,
P.
, and
Bocquet
,
L.
,
2007
, “
Achieving Large Slip With Superhydrophobic Surfaces: Scaling Laws for Generic Geometries
,”
Phys. Fluids
,
19
, p.
123601
.10.1063/1.2815730
13.
Lee
,
C.
,
Choi
,
C. H.
, and
Kim
,
C. J.
,
2008
, “
Structured Surfaces for Giant Liquid Slip
,”
Phys. Rev. Lett.
101
, p.
064501
.10.1103/PhysRevLett.101.064501
14.
Woolford
,
B.
,
Maynes
,
D.
, and
Webb
,
B. W.
,
2009
, “
Liquid Flow Through Microchannels With Grooved Walls Under Wetting and Superhydrophobic Conditions
,”
Microfluid. Nanofluid.
,
7
, pp.
121
135
.10.1007/s10404-008-0365-6
15.
Min
,
T.
, and
Kim
,
J.
,
2004
, “
Effects of Hydrophobic Surface on Skin-Friction Drag
,”
Phys. Fluids
,
16
, pp.
L55
L58
.10.1063/1.1755723
16.
Martell
,
M. B.
,
Perot
,
J. B.
, and
Rothstein
,
J. P.
,
2009
, “
Direct Numerical Simulations of Turbulent Flows Over Superhydrohobic Surfaces
,”
J. Fluid Mech.
,
620
, pp.
31
41
.10.1017/S0022112008004916
17.
Woolford
,
B.
,
Prince
,
J.
,
Maynes
,
D.
, and
Webb
,
B. W.
,
2009
, “
Particle Image Velocimetry Characterization of Turbulent Channel Flow With Rib Patterned Superhydrophobic Walls
,”
Phys. Fluids
,
21
, p.
085106
.10.1063/1.3213607
18.
Daniello
,
R. J.
,
Waterhouse
,
N. E.
, and
Rothstein
,
J. P.
,
2009
, “
Drag Reduction in Turbulent Flows Over Superhydrophobic Surfaces
,”
Phys. Fluids
,
21
, p.
085103
.10.1063/1.3207885
19.
Jeffs
,
K.
,
Maynes
,
D.
, and
Webb
,
B. W.
,
2010
, “
Prediction of Turbulent Channel Flow With Superhydrophobic Walls Consisting of Micro-Ribs and Cavities Oriented Parallel to the Flow Direction
,”
Int. J. Heat Mass Transfer
,
53
, pp.
786
796
.10.1016/j.ijheatmasstransfer.2009.09.033
20.
Teo
,
C. J.
, and
Khoo
,
B. C.
,
2010
, “
Flow Past Superhydrophobic Surfaces Containing Longitudinal Grooves: Effects of Interface Curvature
,”
Microfluid. Nanofluid.
,
9
, pp.
499
511
.10.1007/s10404-010-0566-7
21.
Enright
,
R.
,
Eason
,
C.
,
Dalton
,
T.
,
Hodes
,
M.
,
Salamon
,
T.
,
Kolodner
,
P.
, and
Krupenkin
,
T.
,
2006
, “
Friction Factors and Nusselt Numbers in Microchannels With Superhydrophobic Walls
,”
Proceedings of the 4th International Conference on Nanochannels, Microchannels, and Minichannels
,
Limerick, Ireland
,
June 19–21
,
ASME
, Paper No. ICNMM2006-9613410.1115/ICNMM2006-96134.
22.
Maynes
,
D.
,
Webb
,
B. W.
, and
Davies
,
J.
,
2008
, “
Thermal Transport in a Microchannel Exhibiting Ultrahydrophobic Microribs Maintained at Constant Temperature
,”
ASME J. Heat Transfer
,
130
, p.
022402
.10.1115/1.2789715
23.
Yu
,
S.
, and
Ameel
,
T. A.
,
2001
, “
Slip-Flow Heat Transfer in Rectangular Microchannels
,”
Int. J. Heat Mass Transfer
,
44
, pp.
4225
4234
.10.1016/S0017-9310(01)00075-8
24.
Barron
,
F. R.
,
Wang
,
X.
,
Warrington
,
R. O.
, and
Ameel
,
T.
,
1996
, “
Evaluation of the Eigenvalues for the Graetz Problem in Slip-Flow
,”
Int. Commun. Heat Mass Transfer
,
23
, pp.
563
574
.10.1016/0735-1933(96)00040-1
25.
Barron
,
R. F.
,
Wang
,
X.
,
Ameel
,
T. A.
, and
Warrington
,
R. O.
,
1997
, “
The Graetz Problem Extended to Slip-Flow
,”
Int. J. Heat Mass Transfer
,
40
, pp.
1817
1823
.10.1016/S0017-9310(96)00256-6
26.
Sparrow
,
E. M.
,
Novotny
,
J. L.
, and
Lin
,
S. H.
,
1963
, “
Laminar Flow of a Heat-Generating Fluid in a Parallel-Plate Channel
,”
AIChE J.
,
9
, pp.
797
804
.10.1002/aic.690090618
27.
Cess
,
R. D.
, and
Shafer
,
E. C.
,
1959
, “
Heat Transfer to Laminar Flow Between Parallel Plates With a Prescribed Wall Heat Flux
,”
Appl. Sci. Res.
,
8
, pp.
339
344
.10.1007/BF00411758
28.
Kays
,
W.
,
Crawford
,
M.
, and
Weigand
,
B.
,
2005
,
Convective Heat and Mass Transfer
, 4th ed.,
McGraw–Hill
,
New York
.
29.
Panton
,
R. L.
,
2005
,
Incompressible Flow
, 3rd ed.,
Wiley
,
New York
.
30.
Shah
,
R. K.
, and
Bhatti
,
M. S.
,
1987
, “
Laminar Convective Heat Transfer in Ducts
,”
Handbook of Single-Phase Convective Heat Transfer
,
S.
Kakac
,
R. K.
Shah
, and
W.
Aung
, eds.,
Wiley
,
New York
.
You do not currently have access to this content.