Combined effect of magnetic field and internal heat generation on the onset of Rayleigh–Bénard convection in a horizontal micropolar fluid layer is studied. The bounding surfaces of the liquids are considered to be rigid-free, rigid-rigid, and free-free with combination isothermal on the spin-vanishing boundaries. A linear stability analysis is used and the Galerkin method is employed to find the critical stability parameters numerically. The influence of various parameters on the onset of convection has been analyzed. It is shown that the presence of magnetic field always has a stability effect on the Rayleigh–Bénard convection in micropolar fluid.
Issue Section:
Natural and Mixed Convection
References
1.
Eringen
, A. C.
, 1966
, “Theory of Micropolar Fluid
,” J. Math. Mech.
, 16
, pp.1
–16
.2.
Eringen
, A. C.
, 1972
, “Theory of Thermomicrofluids
,” J. Math. Anal. Appl.
, 38
, pp. 480
–496
.10.1016/0022-247X(72)90106-03.
Rayleigh
, L.
, 1916
, “On Convection Currents in a Horizontal Layer of Fluid When Higher Temperature is on the Under-Side
,” Philos. Mag.
, 32
, pp. 529
–546
.4.
Ahmadi
, G.
, 1976
, “Stability of Micropolar Layer Heated From Below
,” Int. J. Eng. Sci.
, 14
, pp. 81
–89
.10.1016/0020-7225(76)90058-65.
Rama Rao
, K. V.
, 1979
, “Onset of Instability in a Heat Conducting Micropolar Fluid Layer
,” Acta Mech.
, 32
, pp. 79
–84
.10.1007/BF011761356.
Sastry
, V. U. K.
, and Ramamohan Rao
, V.
, 1983
, “Numerical Study of Thermal Instability of a Rotating Micropolar Fluid Layer
,” Int. J. Eng. Sci.
, 21
, pp. 449
–461
.10.1016/0020-7225(83)90095-27.
Siddheshwar
, P. G.
, and Pranesh
, S.
, 2001
, “Suction-Injection Effects on the Onset of Rayleigh-Bénard-Marangoni Convection in a Fluid With Suspended Particles
, “Acta Mech.
, 152
, pp. 241
–252
.10.1007/BF011769588.
Murty
, Y. N.
, 2001
, “Effect of Throughflow and Magnetic Field on Bénard Convection in Micropolar Fluid
,” Acta Mech.
, 150
, pp. 11
–21
.10.1007/BF011785419.
Siddheshwar
, P. G.
, and Pranesh
, S.
, 2002
, “Magnetoconvection in Fluids With Suspended Particles Under 1g and ug
,” Aerosp. Sci. Technol.
, 6
, pp. 105
–114
.10.1016/S1270-9638(01)01144-010.
Abraham
, A.
, 2002
, “Rayleigh-Bénard Convection in a Micropolar Ferromagnetic Fluid
,” Int. J. Eng. Sci.
, 40
, pp. 449
–460
.10.1016/S0020-7225(01)00046-511.
Murty
, Y. N.
, 2003
, “Analysis on Non-Uniform Temperature Profiles on Bénard Convection in Micropolar Fluid
,” Appl. Math. Comput.
, 134
, pp. 473
–486
.10.1016/S0096-3003(01)00295-812.
Sharma
, V.
, and Gupta
, S.
, 2008
, “Thermal Convection of Micropolar Fluid in the Presence of Suspended Particles in Rotation
,” Arch. Mech.
, 60
(4
), pp. 402
–419
.13.
Pranesh
, S.
, and Kiran
, R. V.
, 2010
, “Study of Rayleigh-Benard Magneto Convection in a Micropolar Fluid With Maxwell-Cattaneo Law
,” J. Appl. Math.
, 1
, pp. 470
–480
.10.4236/am.2010.1606214.
Alloui
, Z.
, and Vasseur
, P.
, 2011
, “Onset of Bénard-Marangoni Convection in a Micropolar Fluid
,” Int. J. Heat Mass Transfer
, 54
, pp. 2765
–2773
.10.1016/j.ijheatmasstransfer.2011.02.062Copyright © 2013 by ASME
You do not currently have access to this content.