Combined effect of magnetic field and internal heat generation on the onset of Rayleigh–Bénard convection in a horizontal micropolar fluid layer is studied. The bounding surfaces of the liquids are considered to be rigid-free, rigid-rigid, and free-free with combination isothermal on the spin-vanishing boundaries. A linear stability analysis is used and the Galerkin method is employed to find the critical stability parameters numerically. The influence of various parameters on the onset of convection has been analyzed. It is shown that the presence of magnetic field always has a stability effect on the Rayleigh–Bénard convection in micropolar fluid.

References

1.
Eringen
,
A. C.
,
1966
, “
Theory of Micropolar Fluid
,”
J. Math. Mech.
,
16
, pp.
1
16
.
2.
Eringen
,
A. C.
,
1972
, “
Theory of Thermomicrofluids
,”
J. Math. Anal. Appl.
,
38
, pp.
480
496
.10.1016/0022-247X(72)90106-0
3.
Rayleigh
,
L.
,
1916
, “
On Convection Currents in a Horizontal Layer of Fluid When Higher Temperature is on the Under-Side
,”
Philos. Mag.
,
32
, pp.
529
546
.
4.
Ahmadi
,
G.
,
1976
, “
Stability of Micropolar Layer Heated From Below
,”
Int. J. Eng. Sci.
,
14
, pp.
81
89
.10.1016/0020-7225(76)90058-6
5.
Rama Rao
,
K. V.
,
1979
, “
Onset of Instability in a Heat Conducting Micropolar Fluid Layer
,”
Acta Mech.
,
32
, pp.
79
84
.10.1007/BF01176135
6.
Sastry
,
V. U. K.
, and
Ramamohan Rao
,
V.
,
1983
, “
Numerical Study of Thermal Instability of a Rotating Micropolar Fluid Layer
,”
Int. J. Eng. Sci.
,
21
, pp.
449
461
.10.1016/0020-7225(83)90095-2
7.
Siddheshwar
,
P. G.
, and
Pranesh
,
S.
,
2001
, “
Suction-Injection Effects on the Onset of Rayleigh-Bénard-Marangoni Convection in a Fluid With Suspended Particles
, “
Acta Mech.
,
152
, pp.
241
252
.10.1007/BF01176958
8.
Murty
,
Y. N.
,
2001
, “
Effect of Throughflow and Magnetic Field on Bénard Convection in Micropolar Fluid
,”
Acta Mech.
,
150
, pp.
11
21
.10.1007/BF01178541
9.
Siddheshwar
,
P. G.
, and
Pranesh
,
S.
,
2002
, “
Magnetoconvection in Fluids With Suspended Particles Under 1g and ug
,”
Aerosp. Sci. Technol.
,
6
, pp.
105
114
.10.1016/S1270-9638(01)01144-0
10.
Abraham
,
A.
,
2002
, “
Rayleigh-Bénard Convection in a Micropolar Ferromagnetic Fluid
,”
Int. J. Eng. Sci.
,
40
, pp.
449
460
.10.1016/S0020-7225(01)00046-5
11.
Murty
,
Y. N.
,
2003
, “
Analysis on Non-Uniform Temperature Profiles on Bénard Convection in Micropolar Fluid
,”
Appl. Math. Comput.
,
134
, pp.
473
486
.10.1016/S0096-3003(01)00295-8
12.
Sharma
, V
.
, and
Gupta
,
S.
,
2008
, “
Thermal Convection of Micropolar Fluid in the Presence of Suspended Particles in Rotation
,”
Arch. Mech.
,
60
(
4
), pp.
402
419
.
13.
Pranesh
,
S.
, and
Kiran
,
R. V.
,
2010
, “
Study of Rayleigh-Benard Magneto Convection in a Micropolar Fluid With Maxwell-Cattaneo Law
,”
J. Appl. Math.
,
1
, pp.
470
480
.10.4236/am.2010.16062
14.
Alloui
,
Z.
, and
Vasseur
,
P.
,
2011
, “
Onset of Bénard-Marangoni Convection in a Micropolar Fluid
,”
Int. J. Heat Mass Transfer
,
54
, pp.
2765
2773
.10.1016/j.ijheatmasstransfer.2011.02.062
You do not currently have access to this content.