This paper presents computational results on the effect of fixed or suspended cylindrical solid particles on heat transfer in a channel flow. The computational method is based on the solution of the lattice-Boltzmann equation for the fluid flow, coupled with the energy equation for thermal transport and the Newtonian dynamic equations for direct simulation of suspended particle transport. The effects of Reynolds number, particle-to-channel size ratio, and the eccentricity of the particle on heat transfer from the channel walls for single and multi-particles are presented. The multi-particle flow condition represents a case with solid particles suspended in the cooling medium, such as in micro/nanofluids, to augment heat transfer. The results provide insight into the mechanism by which suspended particles can change the rate of heat transfer in a microchannel.

1.
Shah
,
R. K.
, and
London
,
A. L.
, 1978,
Laminar Flow Forced Convection in Ducts
,
Academic
,
New York
.
2.
Hung
,
T. C.
, and
Fu
,
C. S.
, 1999, “
Conjugate Heat Transfer Analysis for the Passive Enhancement of Electronic Cooling Through Geometric Modification in a Mixed Convection Domain
,”
Numer. Heat Transfer, Part A
1040-7782,
35
(
5
), pp.
519
535
.
3.
Wang
,
Y.
, and
Ghajar
,
A. J.
, 1991, “
Effect of Component Geometry and Layout on Flow Distribution for Surface Mounted Electronic Components: A Smoke Flow Visualization Study
,”
Heat Transfer Enhancements in Electronics Cooling
,
ASME
,
New York
, Vol.
183
, pp.
25
31
.
4.
Saidi
,
M. H.
, and
Khiabani
,
R. H.
, 2007, “
Forced Convective Heat Transfer in Parallel Flow Multilayer Microchannels
,”
ASME J. Heat Transfer
0022-1481,
129
(
9
), pp.
1230
1236
.
5.
Aidun
,
C. K.
, and
Lin
,
S. P.
, 1987, “
Large Amplitude Modulation of Heat Transfer From a Circular Cylinder
,”
Int. J. Heat Mass Transfer
0017-9310,
30
(
2
), pp.
408
411
.
6.
Aidun
,
C. K.
, and
Lin
,
S. P.
, 1986, “
Conjugate Heat Transfer From a Hollow Cylinder
,”
Proceedings of the Eighth International Heat Transfere Conference
, San Francisco, CA, Vol.
2
, pp.
373
378
.
7.
Khan
,
W. A.
,
Culham
,
J. R.
, and
Yovanovich
,
M. M.
, 2004, “
Fluid Flow and Heat Transfer From a Cylinder Between Parallel Planes
,”
J. Thermophys. Heat Transfer
0887-8722,
18
(
3
), pp.
395
403
.
8.
Mettu
,
S.
,
Verma
,
N.
, and
Chhabra
,
R. P.
, 2006, “
Momentum and Heat Transfer From an Asymmetrically Confined Circular Cylinder in a Plane Channel
,”
Heat Mass Transfer
0947-7411,
42
(
11
), pp.
1037
1048
.
9.
Dennis
,
S. C. R.
,
Hudson
,
J. D.
, and
Smith
,
N.
, 1968, “
Steady Laminar Forced Convection From a Circular Cylinder at Low Reynolds Numbers
,”
Phys. Fluids
1070-6631,
11
(
5
), pp.
933
934
.
10.
Nakagawa
,
S.
,
Senda
,
M.
,
Kikkawa
,
S.
,
Wakasugi
,
H.
, and
Hiraide
,
A.
, 1998, “
Heat Transfer in Channel Flow Around a Rectangular Cylinder
,”
Heat Transfer-Jpn. Res.
0096-0802,
27
(
1
), pp.
84
97
.
11.
Sharma
,
A.
, and
Eswaran
,
V.
, 2005, “
Effect of Channel-Confinement and Aiding/Opposing Buoyancy on the Two-Dimensional Laminar Flow and Heat Transfer Across a Square Cylinder
,”
Int. J. Heat Mass Transfer
0017-9310,
48
(
25–26
), pp.
5310
5322
.
12.
Wu
,
H. -W.
,
Perng
,
S. -W.
,
Huang
,
S. -Y.
, and
Jue
,
T. -C.
, 2006, “
Transient Mixed Convective Heat Transfer Predictions Around Three Heated Cylinders in a Horizontal Channel
,”
Int. J. Numer. Methods Heat Fluid Flow
0961-5539,
16
(
6
), pp.
674
692
.
13.
Fu
,
W. S.
, and
Yang
,
S. J.
, 2000, “
Numerical Simulation of Heat Transfer Induced by a Body Moving in the Same Direction as Flowing Fluids
,”
Heat Mass Transfer
0947-7411,
36
(
3
), pp.
257
264
.
14.
Fu
,
W. S.
, and
Tong
,
B. H.
, 2003, “
Numerical Investigation of Heat Transfer of a Heated Channel With an Oscillating Cylinder
,”
Numer. Heat Transfer, Part A
1040-7782,
43
(
6
), pp.
639
658
.
15.
Gau
,
C.
,
Wu
,
J. M.
, and
Liang
,
C. Y.
, 1999, “
Heat Transfer Enhancement and Vortex Flow Structure Over a Heated Cylinder Oscillating in the Crossflow Direction
,”
ASME Trans. J. Heat Transfer
0022-1481,
121
(
4
), pp.
789
795
.
16.
Patnaik
,
B. S. V.
,
Gowda
,
Y. T. K.
,
Ravisankar
,
M. S.
,
Narayana
,
P. A. A.
, and
Seetharamu
,
K. N.
, 2001, “
Finite Element Simulation of Internal Flows With Heat Transfer Using a Velocity Correction Approach
,”
Sadhana: Proc., Indian Acad. Sci.
0256-2499,
26
(
3
), pp.
251
283
.
17.
Aidun
,
C. K.
,
Lu
,
Y.
, and
Ding
,
E. J.
, 1998, “
Direct Analysis of Particulate Suspensions With Inertia Using the Discrete Boltzmann Equation
,”
J. Fluid Mech.
0022-1120,
373
, pp.
287
311
.
18.
Hu
,
H. H.
,
Joseph
,
D. D.
, and
Crochet
,
M. J.
, 1992, “
Direct Simulation of Fluid Particle Motions
,”
Theor. Comput. Fluid Dyn.
0935-4964,
3
(
5
), pp.
285
306
.
19.
Chen
,
H.
,
Chen
,
S.
, and
Matthaeus
,
W. H.
, 1992, “
Recovery of Navier-Stokes Equations Using a Lattice-Gas Boltzmann Method
,”
Phys. Rev. A
1050-2947,
45
(
8
), pp.
5339
5342
.
20.
McNamara
,
G. R.
, and
Zanetti
,
G.
, 1988, “
Use of the Boltzmann Equation to Simulate Lattice-Gas Automata
,”
Phys. Rev. Lett.
0031-9007,
61
(
20
), pp.
2332
2335
.
21.
Ding
,
E. -J.
, and
Aidun
,
C. K.
, 2003, “
Extension of the Lattice-Boltzmann Method for Direct Simulation of Suspended Particles Near Contact
,”
J. Stat. Phys.
0022-4715,
112
(
3–4
), pp.
685
708
.
22.
Hou
,
S.
,
Zou
,
Q.
,
Chen
,
S.
, and
Doolen
,
G.
, 1995, “
Simulation of Cavity Flow by the Lattice Boltzmann Method
,”
J. Comput. Phys.
0021-9991,
118
(
2
), pp.
329
347
.
23.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
, 1995,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
,
Wiley
,
New York
.
24.
Hilpert
,
R.
, 1933, “
Waermeabgabe Von Geheizten Draehten Und Rohren Im Luftstrom
,”
Forsch. Geb. Ingenieurwes.
0367-2204,
4
(
5
), pp.
215
224
.
You do not currently have access to this content.