Abstract

A hierarchical model of heat transfer for the thermal analysis of electronic devices is presented. The integration of participating scales (from nanoscale to macroscales) is achieved by (i) estimating the input parameters and thermal properties to solve the Boltzmann transport equation (BTE) for phonons using molecular dynamics (MD), including phonon relaxation times, dispersion relations, group velocities, and specific heat, (ii) applying quantum corrections to the MD results to make them suitable for the solution of BTE, and (iii) numerically solving the BTE in space and time subject to different boundary and initial conditions. We apply our hierarchical model to estimate the silicon out-of-plane thermal conductivity and the thermal response of an silicon on insulator (SOI) device subject to Joule heating. We have found that relative phonon contribution to the overall conductivity changes as the dimension of the domain is reduced as a result of phonon confinement. The observed reduction in the thermal conductivity is produced by the progressive transition of modes in the diffusive regime (as in the bulk) to transitional and ballistic regimes as the film thickness is decreased. In addition, we have found that relaxation time expressions for optical phonons are important to describe the transient response of SOI devices and that the characteristic transport regimes, determined with Holland and Klemens phonon models, differ significantly.

1.
Peierls
,
R. E.
, 1955,
Quantum Theory of Solid
,
Oxford University Press
,
London
.
2.
Klemens
,
P. G.
, 1958, “
Thermal Conductivity and Lattice Vibrational Modes
,”
Solid State Physics
,
F.
Seitz
and
D.
Thurnbull
, eds.,
Academic
,
New York
, pp.
1
98
.
3.
Klemens
,
P. G.
, 1969, “
Theory of Thermal Conductivity of Solids
,”
Thermal Conductivity
,
R. P.
Tye
, ed.,
Academic
,
London
, pp.
1
68
.
4.
Holland
,
M. G.
, 1963, “
Analysis of Lattice Thermal Conductivity
,”
Phys. Rev.
0096-8250,
132
(
6
), pp.
2461
2471
.
5.
Ziman
,
J.
, 1960,
Electrons and Phonons: The Theory of Transport Phenomena in Solids
,
Oxford University Press
,
Oxford, UK
.
6.
Rowlette
,
J.
, and
Goodson
,
K.
, 2008, “
Fully Coupled Nonequilibrium Electron–Phonon Transport in Nanometer-Scale Silicon FETs
,”
IEEE Trans. Electron Devices
0018-9383,
55
(
1
), pp.
220
232
.
7.
Escobar
,
R.
, and
Amon
,
C. H.
, 2007, “
Influence of Phonon Dispersion on Transient Thermal Response of Silicon-on-Insulator Transistors Under Self-Heating Conditions
,”
ASME J. Heat Transfer
0022-1481,
129
(
7
), pp.
790
797
.
8.
Mazumder
,
S.
, 2001, “
Monte Carlo Study of Phonon Transport in Solid Thin Films Including Dispersion and Polarization
,”
ASME J. Heat Transfer
0022-1481,
123
(
4
), pp.
749
759
.
9.
Narumanchi
,
S. V. J.
,
Murthy
,
J. Y.
, and
Amon
,
C. H.
, 2005, “
Comparison of Different Phonon Transport Models for Predicting Heat Conduction in Silicon-on-Insulator Transistors
,”
ASME J. Heat Transfer
0022-1481,
127
(
7
), pp.
713
723
.
10.
Narumanchi
,
S. V. J.
,
Murthy
,
J. Y.
, and
Amon
,
C. H.
, 2004, “
Submicron Heat Transport Model in Silicon Accounting for Phonon Dispersion and Polarization
,”
ASME J. Heat Transfer
0022-1481,
126
(
6
), pp.
946
955
.
11.
Kazan
,
M.
,
Pereira
,
S.
,
Coutinho
,
J.
,
Correia
,
M. R.
, and
Masri
,
P.
, 2008, “
Role of Optical Phonon in Ge Thermal Conductivity
,”
Appl. Phys. Lett.
0003-6951,
92
(
21
), p.
211903
.
12.
Holland
,
M. G.
, 1964, “
Phonon Scattering in Semiconductors From Thermal Conductivity Studies
,”
Phys. Rev.
0096-8250,
134
(
2A
), pp.
A471
A480
.
13.
Chung
,
J. D.
,
McGaughey
,
A. J. H.
, and
Kaviany
,
M.
, 2004, “
Role of Phonon Dispersion in Lattice Thermal Conductivity Modeling
,”
ASME J. Heat Transfer
0022-1481,
126
(
3
), pp.
376
380
.
14.
Broido
,
D. A.
,
Malorny
,
M.
,
Birner
,
G.
,
Mingo
,
N.
, and
Stewart
,
D. A.
, 2007, “
Intrinsic Lattice Thermal Conductivity of Semiconductors From First Principles
,”
Appl. Phys. Lett.
0003-6951,
91
(
23
), p.
231922
.
15.
Goicochea
,
J. V.
,
Madrid
,
M.
, and
Amon
,
C. H.
, 2010, “
Thermal Properties for Bulk Silicon Based on the Determination of Relaxation Times Using Molecular Dynamics
,”
ASME J. Heat Transfer
0022-1481,
132
(
1
), p.
012401
.
16.
Hamilton
,
R. A.
, and
Parrott
,
J. E.
, 1969, “
Variational Calculation of the Thermal Conductivity of Germanium
,”
Phys. Rev.
0096-8250,
178
(
3
), pp.
1284
1292
.
17.
Sood
,
K. C.
, and
Roy
,
M. K.
, 1993, “
Longitudinal Phonons and High-Temperature Heat Conduction in Germanium
,”
J. Phys.: Condens. Matter
0953-8984,
5
(
3
), pp.
301
312
.
18.
Sinha
,
S.
,
Schelling
,
P. K.
,
Phillpot
,
S. R.
, and
Goodson
,
K. E.
, 2005, “
Scattering of G-Process Longitudinal Optical Phonons at Hotspots in Silicon
,”
J. Appl. Phys.
0021-8979,
97
(
2
), p.
023702
.
19.
Narumanchi
,
S. V. J.
,
Murthy
,
J. Y.
, and
Amon
,
C. H.
, 2006, “
Boltzmann Transport Equation-Based Thermal Modeling Approaches for Hotspots in Microelectronics
,”
Heat Mass Transfer
0947-7411,
42
(
6
), pp.
478
491
.
20.
Pop
,
E.
,
Banerjee
,
K.
,
Sverdrup
,
P.
,
Dutton
,
R.
, and
Goodson
,
K.
, 2001, “
Localized Heating Effects and Scaling of Sub-0.18 Micron CMOS Devices
,”
IEEE Int. Electron Dev. Meet.
, pp.
677
680
.
21.
Pop
,
E.
,
Dutton
,
R. W.
, and
Goodson
,
K. E.
, 2005, “
Monte Carlo Simulation of Joule Heating in Bulk and Strained Silicon
,”
Appl. Phys. Lett.
0003-6951,
86
(
8
), p.
082101
.
22.
Pop
,
E.
,
Sinha
,
S.
, and
Goodson
,
K.
, 2006, “
Heat Generation and Transport in Nanometer-Scale Transistors
,”
Proc. IEEE
0018-9219,
94
(
8
), pp.
1587
1601
.
23.
Reissland
,
J. A.
, 1973,
The Physics of Phonons
,
Wiley-Interscience
,
New York
.
24.
McGaughey
,
A. J.
, and
Kaviany
,
M.
, 2004, “
Quantitative Validation of the Boltzmann Transport Equation Phonon Thermal Conductivity Model Under the Single-Mode Relaxation Time Approximation
,”
Phys. Rev. B
0163-1829,
69
(
9
), p.
094303
.
25.
Ladd
,
A.
,
Moran
,
B.
, and
Hoover
,
W. G.
, 1986, “
Lattice Thermal Conductivity: A Comparison of Molecular Dynamics and Anharmonic Lattice Dynamics
,”
Phys. Rev. B
0163-1829,
34
(
8
), pp.
5058
5064
.
26.
Sun
,
L.
, and
Murthy
,
J. Y.
, 2005, “
Molecular Dynamics Simulation of Phonon Transport in EDIP Silicon
,”
ASME
Paper No. HT2005-72200.
27.
Henry
,
A. S.
, and
Chen
,
G.
, 2008, “
Spectral Phonon Transport Properties of Silicon Based on Molecular Dynamics Simulations and Lattice Dynamics
,”
J. Comput. Theor. Nanosci.
1546-1955,
5
(
2
), pp.
141
152
.
28.
Turney
,
J. E.
,
Landry
,
E. S.
,
McGaughey
,
A. J. H.
, and
Amon
,
C. H.
, 2009, “
Predicting Phonon Properties and Thermal Conductivity From Anharmonic Lattice Dynamics Calculations and Molecular Dynamics Simulations
,”
Phys. Rev. B
0163-1829,
79
(
6
), p.
064301
.
29.
Dove
,
M. T.
, 1993,
Introduction to Lattice Dynamics
,
Cambridge University Press
,
New York
.
30.
Pearson
,
E. M.
,
Halicioglu
,
T.
, and
Tiller
,
W. A.
, 1985, “
Laplace-Transform Technique for Deriving Thermodynamics Equations From the Classical Microcanonical Ensemble
,”
Phys. Rev. A
1050-2947,
32
(
5
), pp.
3030
3039
.
31.
Porter
,
L. J.
,
Yip
,
S.
,
Yamaguchi
,
M.
,
Kaburaki
,
H.
, and
Tang
,
M.
, 1997, “
Empirical Bond-Order Potential Description of Thermodynamic Properties of Crystalline Silicon
,”
J. Appl. Phys.
0021-8979,
81
(
1
), pp.
96
106
.
32.
Tiwari
,
M. D.
, and
Agrawal
,
B. K.
, 1971, “
Analysis of the Lattice Thermal Conductivity of Germanium
,”
Phys. Rev. B
0163-1829,
4
(
10
), pp.
3527
3532
.
33.
Volz
,
S. G.
, and
Chen
,
G.
, 1999, “
Molecular Dynamics Simulation of Thermal Conductivity of Silicon Nanowires
,”
Appl. Phys. Lett.
0003-6951,
75
(
14
), pp.
2056
2058
.
34.
Gomes
,
C.
,
Madrid
,
M.
,
Goicochea
,
J. V.
, and
Amon
,
C. H.
, 2006, “
In-Plane and Out-of-Plane Thermal Conductivity of Silicon Thin Films Predicted by Molecular Dynamics
,”
ASME J. Heat Transfer
0022-1481,
128
(
11
), pp.
1114
1121
.
35.
Lee
,
Y. H.
,
Biswas
,
R.
,
Soukoulis
,
C. M.
,
Wang
,
C. Z.
,
Chan
,
C. T.
, and
Ho
,
K. M.
, 1991, “
Molecular-Dynamics Simulation of Thermal Conductivity in Amorphous Silicon
,”
Phys. Rev. B
0163-1829,
43
(
8
), pp.
6573
6580
.
36.
Volz
,
S. G.
, and
Chen
,
G.
, 2000, “
Molecular-Dynamics Simulation of Thermal Conductivity of Silicon Crystals
,”
Phys. Rev. B
0163-1829,
61
(
4
), pp.
2651
2656
.
37.
Kremer
,
R. K.
,
Graf
,
K.
,
Cardona
,
M.
,
Devyatykh
,
G. G.
,
Gusev
,
A. V.
,
Gibsin
,
A. M.
,
Inyushkin
,
A. V.
,
Taldenkov
,
A. N.
, and
Pohl
,
H.
, 2004, “
Thermal Conductivity of Isotopically Enriched 28Si: Revisited
,”
Solid State Commun.
0038-1098,
131
(
8
), pp.
499
503
.
38.
Murakawa
,
A.
,
Ishii
,
H.
, and
Kakimoto
,
K.
, 2004, “
An Investigation of Thermal Conductivity of Silicon as a Function of Isotope Concentration by Molecular Dynamics
,”
J. Cryst. Growth
0022-0248,
267
(
3–4
), pp.
452
457
.
39.
Carruthers
,
P.
, 1961, “
Theory of Thermal Conductivity of Solids at Low Temperatures
,”
Rev. Mod. Phys.
0034-6861,
33
(
1
), pp.
92
138
.
40.
Goicochea
,
J. V.
,
Madrid
,
M.
, and
Amon
,
C. H.
, 2009, “
Effects of Quantum Corrections and Isotope Scattering on Silicon Thermal Properties
,”
Thermal Investigations of ICs and Systems, THERMINIC
, Leuven, Belgium, pp.
197
202
.
41.
Goicochea
,
J. V.
, 2008, “
Hierarchical Modeling of Heat Transfer in Silicon-Based Electronic Devices
,” Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA.
42.
Goicochea
,
J. V.
, and
Michel
,
B.
, 2010, “
Phonon Relaxation Times of Germanium Determined by Molecular Dynamics at 1000 K
,”
Semiconductor Thermal Measurement, Modeling and Management Symposium (SEMITHERM)
, Santa Clara, CA.
43.
Desai
,
P. D.
, 1986, “
Thermodynamic Properties of Iron and Silicon
,”
J. Phys. Chem. Ref. Data
0047-2689,
15
(
3
), pp.
967
083
.
44.
Ho
,
C. Y.
,
Powell
,
R. W.
, and
Liley
,
P. E.
, 1974, “
Thermal Conductivity of the Elements
,”
J. Phys. Chem. Ref. Data
0047-2689,
3
(
1
), pp.
1
796
.
45.
Escobar
,
R.
,
Smith
,
B.
, and
Amon
,
C. H.
, 2006, “
Lattice Boltzmann Modeling of Subcontinuum Energy Transport in Crystalline and Amorphous Microelectronic Devices
,”
ASME J. Electron. Packag.
1043-7398,
128
(
2
), pp.
115
124
.
46.
Escobar
,
R. A.
,
Ghai
,
S. S.
,
Jhon
,
M. S.
, and
Amon
,
C. H.
, 2006, “
Multi-Length and Time Scale Thermal Transport Using the Lattice Boltzmann Method With Applications to Electronics Cooling
,”
Int. J. Heat Mass Transfer
0017-9310,
49
(
1–2
), pp.
97
107
.
47.
Han
,
Y.
, and
Klemens
,
P. G.
, 1993, “
Anharmonic Thermal Resistivity of Dielectric Crystals at Low Temperatures
,”
Phys. Rev. B
0163-1829,
48
(
9
), pp.
6033
6042
.
48.
Escobar
,
R. A.
, and
Amon
,
C. H.
, 2008, “
Thin Film Phonon Heat Conduction by the Dispersion Lattice Boltzmann Method
,”
ASME J. Heat Transfer
0022-1481,
130
(
9
), p.
092402
.
49.
Succi
,
S.
, 2001,
The Lattice Boltzmann Equation for Fluid Mechanics and Beyond
,
Clarendon
,
Oxford, UK
.
50.
Qian
,
Y. H.
,
d’Humieres
,
D.
, and
Lallemand
,
P.
, 1992, “
Lattice BGK for Navier-Stokes Equation
,”
Europhys. Lett.
0295-5075,
17
(
6
), pp.
479
484
.
You do not currently have access to this content.