A model for coupled radiation transfer and thermal diffusion is proposed, which provides a local temperature field. Single-line scanning of a laser beam over a thin layer of metallic powder placed on a dense substrate of the same material is studied. Both the laser beam diameter and the layer thickness are about 50μm. The typical scanning velocity is in the range of 10–20 cm/s. An effective volumetric heat source is estimated from laser radiation scattering and absorption in a powder layer. A strong difference in thermal conductivity between the powder bed and dense material is taken into account. The above conditions correspond to the technology of selective laser melting that is applied to build objects of complicated shape from metallic powder. Complete remelting of the powder in the scanned zone and its good adhesion to the substrate ensure fabrication of functional parts with mechanical properties close to the ones of the wrought material. Experiments with single-line melting indicate that an interval of scanning velocities exists, where the remelted tracks are uniform. The tracks become “broken” if the scanning velocity is outside this interval. This is extremely undesirable and referred to as the “balling” effect. The size and the shape of the melt pool and the surface of the metallurgical contact of the remelted material to the substrate are analyzed in relation to the scanning velocity. The modeling results are compared with experimental observation of laser tracks. The experimentally found balling effect at scanning velocities above 20cm/s can be explained by the Plateau–Rayleigh capillary instability of the melt pool. Two factors destabilize the process with increasing the scanning velocity: increasing the length-to-width ratio of the melt pool and decreasing the width of its contact with the substrate.

1.
Santos
,
E. C.
,
Shiomi
,
M.
,
Osakada
,
K.
, and
Laoui
,
T.
, 2006, “
Rapid Manufacturing of Metal Components by Laser Forming
,”
Int. J. Mach. Tools Manuf.
,
46
, pp.
1459
1468
. 0890-6955
2.
Yadroitsev
,
I.
,
Bertrand
,
Ph.
,
Laget
,
B.
, and
Smurov
,
I.
, 2007, “
Application of Laser Assisted Technologies for Fabrication of Functionally Graded Coatings and Objects for the International Thermonuclear Experimental Reactor Components
,”
J. Nucl. Mater.
,
362
, pp.
189
196
. 0022-3115
3.
Yadroitsev
,
I.
,
Bertrand
,
Ph.
, and
Smurov
,
I.
, 2007, “
Parametric Analysis of the Selective Laser Melting Process
,”
Appl. Surf. Sci.
,
253
, pp.
8064
8069
. 0169-4332
4.
Choi
,
J.
,
Han
,
L.
, and
Hua
,
Y.
, 2005, “
Modeling and Experiments of Laser Cladding With Droplet Injection
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
978
986
.
5.
Bugeda
,
G.
,
Cervera
,
M.
, and
Lombera
,
G.
, 1999, “
Numerical Prediction of Temperature and Density Distributions in Selective Laser Sintering Processes
,”
Rapid Prototyping J.
,
5
, pp.
21
26
. 1355-2546
6.
Tontowi
,
A. E.
, and
Childs
,
T. H. C.
, 2001, “
Density Prediction of Crystalline Polymer Sintered Parts at Various Powder Bed Temperatures
,”
Rapid Prototyping J.
,
7
, pp.
180
184
. 1355-2546
7.
Tolochko
,
N. K.
,
Arshinov
,
M. K.
,
Gusarov
,
A. V.
,
Titov
,
V. I.
,
Laoui
,
T.
, and
Froyen
,
L.
, 2003, “
Mechanisms of Selective Laser Sintering and Heat Transfer in Ti powder
,”
Rapid Prototyping J.
1355-2546,
9
, pp.
314
326
.
8.
Xiao
,
B.
, and
Zhang
,
Y.
, 2008, “
Numerical Simulation of Direct Metal Laser Sintering of Single-Component Powder on Top of Sintered Layers
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
130
, p.
041002
.
9.
Matsumoto
,
M.
,
Shiomi
,
M.
,
Osakada
,
K.
, and
Abe
,
F.
, 2002, “
Finite Element Analysis of Single Layer Forming on Metallic Powder Bed in Rapid Prototyping by Selective Laser Processing
,”
Int. J. Mach. Tools Manuf.
0890-6955,
42
, pp.
61
67
.
10.
Patil
,
R. B.
, and
Yadava
,
V.
, 2007, “
Finite Element Analysis of Temperature Distribution in Single Metallic Powder Layer During Metal Laser Sintering
,”
Int. J. Mach. Tools Manuf.
,
47
, pp.
1069
1080
. 0890-6955
11.
Kolossov
,
S.
,
Boillat
,
E.
,
Glardon
,
R.
,
Fisher
,
P.
, and
Locher
,
M.
, 2004, “
3D FE Simulation for Temperature Evolution in the Selective Laser Sintering Process
,”
Int. J. Mach. Tools Manuf.
0890-6955,
44
, pp.
117
123
.
12.
Gusarov
,
A. V.
,
Yadroitsev
,
I.
,
Bertrand
,
Ph.
, and
Smurov
,
I.
, 2007, “
Heat Transfer Modeling and Stability Analysis of Selective Laser Melting
,”
Appl. Surf. Sci.
,
254
, pp.
975
979
. 0169-4332
13.
Klocke
,
F.
, and
Wagner
,
C.
, 2003, “
Coalescence Behaviour of Two Metallic Particles as Base Mechanism of Selective Laser Sintering
,”
CIRP Ann.
,
52
, pp.
177
180
. 0007-8506
14.
Rombouts
,
M.
,
Froyen
,
L.
,
Gusarov
,
A. V.
,
Bentefour
,
E. H.
, and
Glorieux
,
C.
, 2005, “
Photopyroelectric Measurement of Thermal Conductivity of Metallic Powders
,”
J. Appl. Phys.
0021-8979,
97
, p.
024905
.
15.
Wang
,
X. C.
,
Laoui
,
T.
,
Bonse
,
J.
,
Kruth
,
J. P.
,
Lauwers
,
B.
, and
Froyen
,
L.
, 2002, “
Direct Selective Laser Sintering of Hard Metal Powders: Experimental Study and Simulation
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
19
, pp.
351
357
.
16.
Siegel
,
R.
, and
Howell
,
J. R.
, 1981,
Thermal Radiation Heat Transfer
,
Hemisphere
,
New York
.
17.
Gusarov
,
A. V.
, and
Kruth
,
J. -P.
, 2005, “
Modelling of Radiation Transfer in Metallic Powders at Laser Treatment
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
3423
3434
.
18.
Leveque
,
R. J.
, 1992,
Numerical Methods for Conservation Laws
,
Birkhauser Verlag
,
Berlin
.
19.
Zel’dovich
,
Y. B.
, and
Raiser
,
Y. P.
, 1967,
Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena
,
Academic
,
New York
.
20.
Gusarov
,
A. V.
,
Bentefour
,
E. H.
,
Rombouts
,
M.
,
Froyen
,
L.
,
Glorieux
,
C.
, and
Kruth
,
J. -P.
, 2006, “
Normal-Directional and Normal-Hemispherical Reflectances of Micron- and Submicron-Sized Powder Beds at 633 and 790 nm
,”
J. Appl. Phys.
0021-8979,
99
, p.
113528
.
21.
Rombouts
,
M.
,
Froyen
,
L.
,
Gusarov
,
A. V.
,
Bentefour
,
E. H.
, and
Glorieux
,
C.
, 2005, “
Light Extinction in Metallic Powder Beds: Correlation With Powder Structure
,”
J. Appl. Phys.
0021-8979,
98
, p.
013533
.
22.
Morgan
,
R.
,
Sutcliffe
,
C. J.
, and
O’Neill
,
W.
, 2001, “
Experimental Investigation of Nanosecond Pulsed Nd:YAG Laser Re-Melted Pre-Placed Powder Beds
,”
Rapid Prototyping J.
1355-2546,
7
, pp.
159
172
.
23.
Kruth
,
J. P.
,
Froyen
,
L.
,
Van Vaerenbergh
,
J.
,
Mercelis
,
P.
,
Rombouts
,
M.
, and
Lauwers
,
B.
, 2004, “
Selective Laser Melting of Iron-Based Powder
,”
J. Mater. Process. Technol.
0924-0136,
149
, pp.
616
622
.
24.
Chandrasekhar
,
S.
, 1961,
Hydrodynamic and Hydromagnetic Stability
,
Clarendon
,
Oxford
.
You do not currently have access to this content.