The thermal performance of microelectromechanical systems devices is governed by the structure and composition of the constituent materials as well as the geometrical design. With the continued reduction in the characteristic sizes of these devices, experimental determination of the thermal properties becomes more difficult. In this study, the thermal conductivity of polycrystalline silicon (polysilicon) microbridges are measured with the transient 3ω technique and compared with measurements on the same structures using a steady state Joule heating technique. The microbridges with lengths from 200μm to 500μm were designed and fabricated using the Sandia National Laboratories SUMMiT V™ surface micromachining process. The advantages and disadvantages of the two experimental methods are examined for suspended microbridge geometries. The differences between the two measurements, which arise from the geometry of the test structures and electrical contacts, are explained by bond pad heating and thermal resistance effects.

1.
Smith
,
A. N.
, and
Calame
,
J. P.
, 2004, “
Impact of Thin Film Thermophysical Properties on Thermal Management of Wide Bandgap Solid-State Transistors
,”
Int. J. Thermophys.
0195-928X,
25
, pp.
409
422
.
2.
Cahill
,
D. G.
,
Ford
,
W. K.
,
Goodson
,
K. E.
,
Mahan
,
G. D.
,
Majumdar
,
A.
,
Maris
,
H. J.
,
Merlin
,
R.
, and
Phillpot
,
S. R.
, 2003, “
Nanoscale Thermal Transport
,”
J. Appl. Phys.
0021-8979,
93
, pp.
793
818
.
3.
Mcconnell
,
A. D.
,
Uma
,
S.
, and
Goodson
,
K. E.
, 2001, “
Thermal Conductivity of Doped Polysilicon Layers
,”
J. Microelectromech. Syst.
1057-7157,
10
, pp.
360
369
.
4.
Cahill
,
D. G.
,
Goodson
,
K. E.
, and
Majumdar
,
A.
, 2002, “
Thermometry and Thermal Transport in Micro/Nanoscale Solid-State Devices and Structures
,”
ASME J. Heat Transfer
0022-1481,
124
, pp.
223
241
.
5.
Uma
,
S.
,
Mcconnell
,
A. D.
,
Ashegi
,
M.
,
Kurabayashi
,
K.
, and
Goodson
,
K. E.
, 2001, “
Temperature-Dependent Thermal Conductivity of Undoped Polycrystalline Silicon Layers
,”
Int. J. Thermophys.
0195-928X,
22
, pp.
605
616
.
6.
Asheghi
,
M.
,
Kurabayashi
,
K.
,
Kasnavi
,
R.
, and
Goodson
,
K. E.
, 2002, “
Thermal Conduction in Doped Single-Crystal Silicon Films
,”
J. Appl. Phys.
0021-8979,
91
, pp.
5079
5088
.
7.
Park
,
K.
,
Marchenkov
,
A.
,
Zhang
,
Z. M.
, and
King
,
W. P.
, 2007, “
Low Temperature Characterization of Heated Microcantilevers
,”
J. Appl. Phys.
0021-8979,
101
, p.
094504
.
8.
Paul
,
O. M.
,
Korvink
,
J.
, and
Baltes
,
H.
, 1994, “
Determination of the Thermal Conductivity of CMOS IC Polysilicon
,”
Sens. Actuators, A
0924-4247,
41
, pp.
161
164
.
9.
Von Arx
,
M.
,
Paul
,
O.
, and
Baltes
,
H.
, 2000, “
Process-Dependent Thin-Film Thermal Conductivities for Thermal CMOS MEMS
,”
J. Microelectromech. Syst.
1057-7157,
9
, pp.
136
145
.
10.
Volklein
,
F.
, and
Baltes
,
H.
, 1992, “
A Microstructure for Measurement of Thermal Conductivity of Polysilicon Thin Films
,”
J. Microelectromech. Syst.
1057-7157,
1
, pp.
193
196
.
11.
Phinney
,
L. M.
,
Kuppers
,
J. D.
, and
Clemens
,
R. C.
, 2006, “
Thermal Conductivity of SUMMiT™ V Polycrystalline Silicon
,” Sandia National Laboratories, Report No. SAND2006-7122.
12.
Tai
,
Y. C.
,
Mastrangelo
,
C. H.
, and
Muller
,
R. S.
, 1988, “
Thermal Conductivity of Heavily Doped Low-Pressure Chemical Vapor Deposited Polycrystalline Silicon Films
,”
J. Appl. Phys.
0021-8979,
63
, pp.
1442
1447
.
13.
Tai
,
Y. C.
,
Mastrangelo
,
C. H.
, and
Muller
,
R. S.
, 1989, “
Erratum: ‘Thermal Conductivity of Heavily Doped Low-Pressure Chemical Vapor Deposited Polycrystalline Silicon Films’ [J. Appl. Phys. 63, 1442 (1988)]
,”
J. Appl. Phys.
0021-8979,
66
, pp.
3420
.
14.
Cahill
,
D. G.
, 1990, “
Thermal Conductivity Measurement From 30 to 750 K: The 3ω Method
,”
Rev. Sci. Instrum.
0034-6748,
61
, pp.
802
808
.
15.
Cahill
,
D. G.
, 2002, “
Erratum: ‘Thermal Conductivity Measurement From 30 to 750 K: The 3ω Method’ [Rev. Sci. Instrum. 61, 802 (1990)]
,”
Rev. Sci. Instrum.
0034-6748,
73
, p.
3701
.
16.
Lee
,
S. -M.
, and
Cahill
,
D. G.
, 1997, “
Heat Transport in Thin Dielectric Films
,”
J. Appl. Phys.
0021-8979,
81
, pp.
2590
2595
.
17.
Lee
,
S. -M.
,
Cahill
,
D. G.
, and
Venkatasubramanian
,
R.
, 1997, “
Thermal Conductivity of Si-Ge Superlattices
,”
Appl. Phys. Lett.
0003-6951,
70
, pp.
2957
2959
.
18.
Borca-Tasciuc
,
T.
,
Kumar
,
A. R.
, and
Chen
,
G.
, 2001, “
Data Reduction in 3ω Method for Thin-Film Thermal Conductivity Determination
,”
Rev. Sci. Instrum.
0034-6748,
72
, pp.
2139
2147
.
19.
Olson
,
B. W.
,
Graham
,
S.
, and
Chen
,
K.
, 2005, “
A Practical Extension of the 3ω Method to Multilayer Structures
,”
Rev. Sci. Instrum.
0034-6748,
76
, p.
053901
.
20.
Dames
,
C.
, and
Chen
,
G.
, 2005, “
1ω, 2ω, and 3ω Methods for Measurements of Thermal Properties
,”
Rev. Sci. Instrum.
0034-6748,
76
, p.
124902
.
21.
Lu
,
L.
,
Yi
,
W.
, and
Zhang
,
D. L.
, 2001, “
3ω Method for Specific Heat and Thermal Conductivity Measurements
,”
Rev. Sci. Instrum.
0034-6748,
72
, pp.
2996
3003
.
22.
SUMMiT V™: Five Level Surface Micromachining Technology and Design Manual
,” 2007, MEMS Technology Department, Sandia National Laboratories, Report No. SAND2007-D0446.
23.
Sniegowski
,
J. J.
, and
De Boer
,
M. P.
, 2000, “
IC-Compatible Polysilicon Surface Micromachining
,”
Annu. Rev. Mater. Sci.
0084-6600,
30
, pp.
299
333
.
24.
Phinney
,
L. M.
,
Piekos
,
E. S.
, and
Kuppers
,
J. D.
, 2007, “
Bond Pad Effects on Steady State Thermal Conductivity Measurement Using Suspended Micromachined Test Structures
,”
Proceedings of the 2007 ASME International Mechanical Engineering Congress and Exposition
, Seattle, WA, Paper No. 41349.
25.
Torczynski
,
J. R.
,
Gallis
,
M. A.
,
Piekos
,
E. S.
,
Phinney
,
L. M.
,
Serrano
,
J. R.
, and
Gorby
,
A. D.
, 2008, “
Validation of Thermal Models for a Prototypical MEMS Thermal Actuator
,” Sandia National Laboratories, Report No. SAND2008-D5749.
26.
Incropera
,
F.
, and
Dewitt
,
D. P.
, 1996,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
New York
.
27.
Swartz
,
E. T.
, and
Pohl
,
R. O.
, 1989, “
Thermal Boundary Resistance
,”
Rev. Mod. Phys.
0034-6861,
61
, pp.
605
668
.
28.
Ho
,
C. Y.
,
Powell
,
R. W.
, and
Liley
,
P. E.
, 1972, “
Thermal Conductivity of the Elements
,”
J. Phys. Chem. Ref. Data
,
1
, pp.
279
422
. 0047-2689
29.
Hohlfeld
,
J.
,
Wellershoff
,
S. -S.
,
Gudde
,
J.
,
Conrad
,
U.
,
Jahnke
,
V.
, and
Matthias
,
E.
, 2000, “
Electron and Lattice Dynamics Following Optical Excitation of Metals
,”
Chem. Phys.
0301-0104,
251
, pp.
237
258
.
30.
Cahill
,
D. G.
,
Bullen
,
A.
, and
Lee
,
S. -M.
, 2000, “
Interface Thermal Conductance and the Thermal Conductivity of Multilayer Thin Films
,”
High Temp. - High Press.
0018-1544,
32
, pp.
135
142
.
31.
Gundrum
,
B. C.
,
Cahill
,
D. G.
, and
Averback
,
R. S.
, 2005, “
Thermal Conductance of Metal-Metal Interfaces
,”
Phys. Rev. B
0163-1829,
72
, p.
245426
.
You do not currently have access to this content.