Stochastic heat transfer problems are often solved using a perturbation approach that yields estimates of mean values and standard deviations for properties and boundary conditions that are random variables. Methods based on polynomial chaos and Wick products can be used when the randomness is a random field or white noise to describe specific realizations and to determine the statistics of the response. Polynomial chaos is best suited for problems in which the properties are strongly correlated, while the Wick product approach is most effective for variables containing white noise components. A transient lumped capacitance cooling problem and a one-dimensional fin are analyzed by both methods to demonstrate their usefulness.

1.
Emery
,
A. F.
, 2002, “
Transient and Steady State Free Convection from a Horizontal Cylinder
,”
Proc. Inverse Problems in Engineering
, Agra dos Reis, Brazil.
2.
Bouleau
,
N.
, and
Lepingle
,
D.
, 1993,
Numerical Methods for Stochastic Processes
,
J. Wiley and Sons
, New York.
3.
Ghanem
,
R.
, and
Spanos
,
P.
, 1991,
Stochastic Finite Elements: A Spectral Approach
,
Springer-Verlag Publ.
, New York.
4.
Ghanem
,
R.
, 1998, “
Probabilistic Characterization of Transport in Heterogeneous Media
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
158
, pp.
199
220
.
5.
Le Maitre
,
O. P.
,
Knio
,
O. M.
,
Najm
,
H. N.
, and
Ghanem
,
R. G.
, 2001, “
A Stochastic Projection Method for Fluid Flow
,”
J. Comput. Phys.
0021-9991,
173
, pp.
481
511
.
6.
Holden
,
H.
,
Oksendal
,
B.
,
Uboe
,
J.
, and
Zhang
,
T. S.
, 1995,
Stochastic Partial Differential Equations—A Modeling, White Noise Functional Approach
,
Birkauser Publ.
, Boston, MA.
7.
Soong
,
T. T.
, 1973,
Random Differential Equations in Engineering and Science
,
Academic Press
, New York.
8.
Gard
,
T. C.
, 1988,
Introduction to Stochastic Differential Equations
,
Marcel Dekker
, New York.
9.
Oksendal
,
B.
, 1998,
Stochastic Differential Equations: An Introduction with Applications
,
Springer
, New York.
10.
Xiu
,
D.
, and
Karniadakis
,
G. E.
, 2002, “
The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations
,”
SIAM J. Sci. Comput. (USA)
1064-8275,
24
(
2
), pp.
619
644
.
11.
Sakamoto
,
S.
, and
Ghanem
,
R.
, 2002, “
Polynomial Chaos Decomposition for the Simulation of Non-Gaussian Non-stationary Stochastic Processes
,”
J. Eng. Mech.
0733-9399,
128
(
2
), pp.
190
201
.
12.
Keese
,
A.
, and
Matthies
,
H. G.
, 2002, “
Efficient Solvers for Nonlinear Stochastic Problem
,”
Fifth World Congress on Computational Mechanics
, Vienna, Austria.
13.
Guttman
,
I.
,
Wilks
,
S. S.
, and
Hunter
,
J. S.
, 1982,
Introductory Engineering Statistics
,
J. Wiley and Sons
, New York.
14.
Ditlevsen
,
O.
, and
Tarp-Johansen
,
N. J.
, 1999, “
Choice of Input Fields in Stochastic Finite Elements
,”
Probab. Eng. Mech.
0266-8920,
14
, pp.
63
72
.
15.
Keese
,
A.
, 2003, “
A Review of Recent Developments in the Numerical Solution of Stochastic Partial Differential Equations (Stochastic Finite Elements)
,” http://opus.tu-bs.de/opus/volltexte/2003/504/pdf/review_sfern.pdfhttp://opus.tu-bs.de/opus/volltexte/2003/504/pdf/review_sfern.pdf
16.
Benth
,
F. E.
, and
Theting
,
T. G.
, 2000, Some Regularity Results for the Stochastic Pressure Equation of Wick-Type www.maphysto.dk/oldpages/publications/publications2000_static.htmlwww.maphysto.dk/oldpages/publications/publications2000_static.htmlpp.
17.
Theting
,
T. G.
, 2000, “
Solving Parabolic Wick-Stochastic Boundary Value Problems Using a Finite Element Method
,”
Stochastics and Stochastics Reports
,
75
(
1–2
), pp.
57
92
.
You do not currently have access to this content.