A two-dimensional model of a proton exchange membrane fuel cell stack is developed. Taking advantage of the geometrical periodicity of the stack, the model is used to predict the detailed thermal and electrochemical characteristics of the fuel cell. Using recently reported as well as new experimental results, the electrical and thermal contact resistances and modifications in the gas diffusion layer transport properties that develop within the stack in response to changes in the compressive force used to assemble the stack are accounted for. The fuel cell stack performance, reported in terms of its power output and internal temperature distributions, is very sensitive to the compressive load.

1.
Springer
,
T. E.
,
Zawodzinski
,
T. A.
, and
Gottesfeld
,
S.
, 1991, “
Polymer Electrolyte Fuel Cell Model
,”
J. Electrochem. Soc.
0013-4651,
138
(
8
), pp.
2334
2342
.
2.
Bernardi
,
D. M.
, and
Vebrugge
,
M. W.
, 1992, “
A Mathematical Model of the Solid-Polymer-Electrolyte Fuel Cell
,”
J. Electrochem. Soc.
0013-4651,
139
(
9
), pp.
2477
2491
.
3.
Zhou
,
T.
, and
Liu
,
H.
, 2001, “
A General Three-Dimensional Model for Proton Exchange Membrane Fuel Cells
,”
Int. J. Transp. Phenom.
1028-6578,
3
(
3
), pp.
177
198
.
4.
Siegel
,
N. P.
,
Ellis
,
M. W.
,
Nelson
,
D. J.
, and
Spakovsky
,
M. R.
, 2004, “
A Two-Dimensional Computational Model of a PEMFC With Liquid Water Transport
,”
J. Power Sources
0378-7753,
128
, pp.
173
184
.
5.
Faghri
,
A.
, and
Gue
,
Z.
, 2005, “
Challenges and Opportunities of Thermal Management Issues Related to Fuel Cell Technology and Modeling
,”
Int. J. Heat Mass Transfer
0017-9310,
48
(
19–20
), pp.
3891
3920
.
6.
Ihonen
,
J.
,
Mikkola
,
M.
, and
Lindbergh
,
G.
, 2004, “
Flooding of Gas Diffusion Backing in PEFCs
,”
J. Electrochem. Soc.
0013-4651,
151
(
8
), pp.
A1152
A1161
.
7.
Mishra
,
V.
,
Yang
,
F.
, and
Pitchumani
,
R.
, 2004, “
Measurement and Prediction of Electrical Contact Resistance Between Gas Diffusion Layers and Bipolar Plate for Applications to PEM Fuel Cells
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
1
, pp.
1
8
.
8.
Barbir
,
F.
,
Braun
,
J.
, and
Neutzler
,
J.
, 1999, “
Properties of Molded Graphite Bi-Polar Plates for PEM Fuel Cell Stacks
,”
J. New Mater. Electrochem. Syst.
1480-2422,
2
, pp.
197
200
.
9.
Mathias
,
M. F.
,
Roth
,
J.
,
Fleming
,
J.
, and
Lehnert
,
W.
, 2003, “
Diffusion Media Materials and Characterisation
,”
Handbook of Fuel Cells—Fundamentals, Technology and Applications
, Vol.
3
,
Wiley
,
New York
, pp.
517
537
.
10.
Birgersson
,
E.
,
Noponen
,
M.
, and
Vynnycky
,
M.
, 2005, “
Analysis of a Two-Phase Non-Isothermal Model for a PEFC
,”
J. Electrochem. Soc.
0013-4651,
152
(
5
), pp.
A1021
A1034
.
11.
Uan-Zo-li
,
J. T.
, 2001, “
The Effects of Structure, Humidity and Aging on the Mechanical Properties of Polymeric Ionomers for Fuel Cell Applications
,” M.S. thesis, The Virginia Polytechnic Institute and State University, Blacksburg, VA.
12.
Berning
,
T.
,
Lu
,
D. M.
, and
Djilali
,
N.
, 2002, “
Three-Dimensional Computational Analysis of Transport Phenomena in a PEM Fuel Cell
,”
J. Power Sources
0378-7753,
106
, pp.
284
294
.
13.
Dagan
,
G.
, 1989,
Flow and Transport in Porous Formations
,
Springer
,
New York
.
14.
Wang
,
L.
,
Husar
,
A.
,
Zhou
,
T.
, and
Liu
,
H.
, 2003, “
A Parametric Study of PEM Fuel Cell Performances
,”
Int. J. Hydrogen Energy
0360-3199,
28
, pp.
1263
1272
.
15.
Um
,
S.
,
Wang
,
C. Y.
, and
Chen
,
K. S.
, 2000, “
Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
147
(
12
), pp.
4485
4493
.
16.
Barbir
,
F.
, 2005,
PEM Fuel Cells
,
Elsevier Academic
,
New York
, Chap. 2.
17.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
, 2007,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
Hoboken, NJ
, Chaps. 8 and 14.
You do not currently have access to this content.