A state-of-the-art study and a physical and numerical 3D finite element study of anisotropic conduction through composites filled with isometric inclusions of different conductivity were performed by modeling the longitudinal conduction across a tetragonal lattice of spheres in imperfect contact with the surrounding matrix. In dimensionless variables, the effective conductivity E is expressible as a function of a geometrical parameter B, reflecting the relative thickness of the gap between spheres, the Kapitza resistance C of the contact inclusion/matrix, and the relative resistivity D of the filler. The computation of some 600 E values at some 25 levels of the factors B, C, and D allows one to find some features, such as the leading role of the factor whose value is the highest of three, the low effect of the interactions between factors, the imperfect equivalence of the effects of the three factors, the slow and linear E dependence on the second and third greatest factor, and finally, the asymptotically exact linear relationship between E and the logarithmated sum of factors, with a slope depending only slightly on the relative magnitudes of factors.

1.
Every
,
A.
,
Tsou
,
Y.
,
Hasselman
,
D.
, and
Raj
,
R.
, 1992, “
The Effect of Particle Size on the Thermal Conductivity of ZnS/Diamond Composites
,”
Acta Metall. Mater.
0956-7151,
40
, pp.
123
129
.
2.
Bao
,
K.
,
Lu
,
H.
, and
Grimvall
,
G.
, 1993, “
Transversal Thermal Conductivity in Fiber-Composite With Non-Ideal Geometries
,”
Int. J. Heat Mass Transfer
0017-9310,
36
, pp.
4033
4038
.
3.
Araki
,
N.
,
Tang
,
D. W.
,
Makino
,
A.
,
Hashimoto
,
M.
, and
Sano
,
T.
, 1998, “
Transient Characteristics of Thermal Conduction in Dispersed Composites
,”
Int. J. Thermophys.
0195-928X,
19
, pp.
1239
1251
.
4.
Zinchenko
,
A.
, 1998, “
Effective (Thermal) Conductivity of Loaded Granular Materials by Numerical Simulations
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
356
, pp.
2953
2998
.
5.
Lu
,
S.
, 1998, “
Effective Conductivities of Aligned Spheroid Dispersion Estimated by an Equivalent Inclusion Model
,”
J. Appl. Phys.
0021-8979,
84
, pp.
2647
2655
.
6.
Privalko
,
V.
, and
Novikov
,
V.
, 1995, “
Modeling of Thermal Conductivity in Heterogeneous Polymers
,”
Thermal and Electrical Conductivity of Polymer Materials
,
Y.
Godovsky
, and
V.
Privalko
, eds., Adv. Polymer Sci., Vol.
119
,
Springer-Verlag
, Berlin, pp.
31
77
.
7.
Chen
,
T.
, 1993, “
Interfacial Discontinuities in Thermal Conduction
,”
Int. J. Eng. Sci.
0020-7225,
31
, pp.
425
434
.
8.
Gonçalves
,
L.
, and
Kolodziej
,
J.
, 1993, “
Modeling the Effective Thermal Conductivity of Composites With Imperfect Contact Matrix/Fiber
,”
Int. Commun. Heat Mass Transfer
0735-1933,
20
, pp.
111
121
.
9.
Ramani
,
K.
, and
Vaidyanathan
,
A.
, 1995, “
Finite Element Analysis of Effective Thermal Conductivity of Filled Polymeric Composites
,”
J. Compos. Mater.
0021-9983,
29
, pp.
1725
1740
.
10.
Zou
,
M.
,
Yu
,
B.
, and
Zhang
,
D.
, 2002, “
An Analytical Solution for Transverse Thermal Conductivity of Unidirectional Fibre Composites With Thermal Barrier
,”
J. Phys. D
0022-3727,
35
, pp.
1867
1874
.
11.
Garnier
,
B.
,
Dupuis
,
T.
,
Gilles
,
J.
,
Bardon
,
J.
, and
Danes
,
F.
, 2002, “
Thermal Contact Resistance Between Matrix and Particle in Composite Materials, Measured by a Thermal Microscopic Method Using a Semi-Intrinsic Thermocouple
,”
Proc. of 12th Int. Heat Transfer Conf., Grenoble
, Vol.
4
,
J.
Taine
, eds.,
Elsevier
, New York, pp.
9
14
.
12.
Benveniste
,
Y.
, and
Miloh
,
T.
, 1986, “
Effective Thermal Conductivity of Composites With Imperfect Thermal Contact at Constituent Interfaces
,”
Int. J. Eng. Sci.
0020-7225,
24
, pp.
1537
1532
.
13.
Benveniste
,
Y.
, 1987, “
Effective Thermal Conductivity of Composites With a Thermal Contact Resistance Between Constituents: Non-Dilute Case
,”
J. Appl. Phys.
0021-8979,
61
, pp.
2840
2843
.
14.
Hasselman
,
D.
, and
Johnson
,
L.
, 1987, “
Effective Conductivity of Composites With Interfacial Thermal Resistance
,”
J. Compos. Mater.
0021-9983,
21
, pp.
508
515
.
15.
Chiew
,
Y.
, and
Glandt
,
E.
, 1987, “
Effective Conductivity of Dispersions: Effect of Resistance at the Surfaces of Particles
,”
Chem. Eng. Sci.
0009-2509,
42
, pp.
2677
2685
.
16.
Wang
,
J.
, and
Yi
,
X.
, 2004, “
Effect of Interfacial Thermal Barrier Resistance and Particle Shape on the [Effective] Thermal Conductivity of AlN/Polyimide Composites
,”
Compos. Sci. Technol.
0266-3538,
64
, pp.
1623
1628
.
17.
Davis
,
A.
, and
Brenner
,
H.
, 1997, “
Use of Boundary Conditions of the 3rd Kind to Model Heat Conduction Between Two Proximate Rough Surfaces Separated by an Insulator
,”
Int. J. Heat Mass Transfer
0017-9310,
40
, pp.
1459
1465
.
18.
Cheng
,
H.
, and
Torquato
,
S.
, 1997, “
Effective Conductivity of Periodic Arrays of Spheres With Interfacial Resistance
,”
Proc. R. Soc. London, Ser. A
1364-5021,
453
, pp.
145
161
.
19.
Danes
,
F.
,
Garnier
,
B.
,
Dupuis
,
T.
,
Lerendu
,
P.
, and
Nguyen
,
T.
, 2005, “
Non-Uniformity of the Filler Concentration and of the Transverse Thermal and Electrical Conductivities of Filled Polymer Plates
,”
Compos. Sci. Technol.
0266-3538,
65
, pp.
945
951
.
20.
Cruz
,
M.
, 1998, “
Effective Conductivity Computation in 3-D Ordered Composites With a Thermally Conducting Disperse Phase
,”
Proc. of 11th Int. Heat Transfer Conf., Kiongju, Korea
,
Taylor and Francis
, New York, Vol.
7
, pp.
9
14
.
21.
Botterill
,
J.
,
Salway
,
A.
, and
Teoman
,
Y.
, 1989, “
Effective Thermal Conductivity of Granular Beds by High Temperatures, 2: Models and Prediction
,”
Int. J. Heat Mass Transfer
0017-9310,
32
, pp.
595
609
.
22.
Springer
,
G.
, and
Tsai
,
S.
, 1967, “
Thermal Conductivities of [Containing Fibres Oriented] Unidirectional Materials
,”
J. Compos. Mater.
0021-9983,
1
, pp.
166
173
.
23.
Islam
,
M.
, and
Pramila
,
A.
, 1999, “
Thermal Conductivity of Fiber Reinforced Composites by [2D] Finite Elements Method
,”
J. Compos. Mater.
0021-9983,
33
, pp.
1699
1715
.
24.
McKenzie
,
D.
, and
McPhedran
,
R.
, 1977, “
Exact Modeling of Cubic Lattice Permittivity and Conductivity
,”
Nature (London)
0028-0836,
265
, pp.
128
129
.
25.
McPhedran
,
R.
, and
McKenzie
,
D.
, 1978, “
Thermal Conductivity of Lattices of Spheres. 1: The Simple Cubic Lattice
,”
Proc. R. Soc. London, Ser. A
1364-5021,
359
, pp.
45
63
.
26.
McKenzie
,
D.
,
McPhedran
,
R.
, and
Derrick
,
G.
, 1978, “
Thermal Conductivity of Lattices of Spheres. 2: The Body Centered and Face Centered Cubic Lattices
,”
Proc. R. Soc. London, Ser. A
1364-5021,
362
, pp.
211
232
.
27.
Sangani
,
A.
, and
Acrivos
,
A.
, 1982, “
Effective Conductivity of a Periodical Array of Spheres
,”
Proc. R. Soc. London, Ser. A
1364-5021,
386
, pp.
263
275
.
28.
Malyshev
,
V.
, and
Malyshev
,
P.
, 1987, “
Estimation of the Dielectric Permittivity of a Periodic Array of Solid Bodies
,”
Doklady Akad. Nauk Ukrain. SSR, Ser. AN
,
12
, pp.
48
53
.
29.
McPhedran
,
R.
, and
Milton
,
G.
, 1981, “
Bounds and Exact Theories for the Transport Properties of Inhomogeneous Media
,”
Appl. Phys. A: Solids Surf.
0721-7250,
26
, pp.
207
220
.
30.
Batchelor
,
G.
, and
O’Brien
,
R.
, 1977, “
Thermal or Electrical Conduction Through a Granular Material
,”
Proc. R. Soc. London, Ser. A
1364-5021,
355
, pp.
313
323
.
31.
Comsol 2005, COMSOL Multiphysics, User’s Guide v3.2, http://www.comsol.com/http://www.comsol.com/
32.
Lu
,
K.
, and
Kou
,
S.
, 1993, “
The Effective Thermal Conductivity of Porous Material With Spherical Inclusions in Tetragonal or Simple Cubic Array
,”
Int. Commun. Heat Mass Transfer
0735-1933,
20
, pp.
489
500
.
You do not currently have access to this content.