Experimental data are presented for forced-convection condensation of low-pressure steam on a set of single, integral-fin tubes. The five tubes had fin-root diameter of 12.7mm and identical fin geometry except for fin spacing, which was varied from 0.25mmto2mm. The range of vapor velocity was 14.762.3ms at an absolute pressure of 14kPa. Heat-transfer enhancement was a strong function of both vapor velocity and fin spacing, and the interrelationship of the two parameters led to complex trends in the data. Observations of the extent of condensate flooding (i.e., condensate trapped between the fins at the bottom of the tube) indicated that the effect of vapor shear on flooding was a significant controlling factor in the heat-transfer process, and this factor explained, at least quantitatively, the trends observed.

1.
Michael
,
A. G.
,
Marto
,
P. J.
,
Wanniarachchi
,
A. S.
, and
Rose
,
J. W.
, 1989, “
Effect of Vapour Velocity During Condensation on Horizontal Smooth and Finned Tubes
,”
Proceedings of ASME Winter Annual Meeting
,
San Francisco
, HTD-Vol.
114
,
1
10
.
2.
Bella
,
A.
,
Cavallini
,
A.
,
Longo
,
G. A.
, and
Rossetto
,
L.
, 1993, “
Pure Vapour Condensation of Refrigerants 11 and 113 on a Horizontal Integral-Fin Tube at High Vapour Velocity
,”
J. Enhanced Heat Transfer
1065-5131,
1
, pp.
77
86
.
3.
Cavallini
,
A.
,
Doretti
,
L.
,
Longo
,
G. A.
, and
Rossetto
,
L.
, 1994, “
Experimental Investigation of Condensate Flow Patterns on Enhanced Surfaces
,”
Proceedings of CFC’s, The Day After, IIR International Conference
,
Padua
, pp.
627
634
.
4.
Namasivayam
,
S.
, and
Briggs
,
A.
, 2004, “
Effect of Vapour Velocity on Condensation of Atmospheric Pressure Steam on Integral-Fin Tubes
,”
Appl. Therm. Eng.
1359-4311,
24
, pp.
1353
1364
.
5.
Namasivayam
,
S.
, and
Briggs
,
A.
, 2005, “
Condensation of Ethylene Glycol on Integral-Fin Tubes—Effect of Fin Geometry and Vapor Velocity
,”
Trans. ASME, Ser. C: J. Heat Transfer
0022-1481,
127
, pp.
1197
1206
.
6.
Namasivayam
,
S.
, and
Briggs
,
A.
, 2006, “
Condensation of Atmospheric Pressure Steam on Integral-Fin Tubes—Effect of Fin Height and Vapour Velocity
,”
Proceedings of 13th International Heat Transfer Conference
,
Sydney
.
7.
Cavallini
,
A.
,
Doretti
,
L.
,
Longo
,
G. A.
, and
Rossetto
,
L.
, 1996, “
A New Model for Forced-Convection Condensation on Integral-Fin Tubes
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
118
, pp.
689
693
.
8.
Briggs
,
A.
, and
Rose
,
J. W.
, 1994, “
Effect of Fin Efficiency on a Model for Condensation Heat Transfer on a Horizontal, Integral-Fin Tube
,”
Int. J. Heat Mass Transfer
0017-9310,
37
(
1
), pp.
457
463
.
9.
Sieder
,
E. N.
, and
Tate
,
G. E.
, 1936, “
Heat Transfer and Pressure Drop of Liquids in Tubes
,”
Ind. Eng. Chem.
0019-7866,
28
, pp.
1429
1435
.
10.
Shekriladze
,
I. G.
, and
Gomelauri
,
V. I.
, 1966, “
Theoretical Study of Laminar Film Condensation of Flowing Vapor
,”
Int. J. Heat Mass Transfer
0017-9310,
9
, pp.
581
591
.
11.
Rose
,
J. W.
, 1984, “
Effect of Pressure Gradient in Forced-Convection Film Condensation on a Horizontal Tube
,”
Int. J. Heat Mass Transfer
0017-9310,
27
, pp.
39
47
.
12.
Kline
,
S. J.
, and
McClintock
,
F. A.
, 1953, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
75
, pp.
3
8
.
13.
Briggs
,
A.
, 1991, “
Forced-Convection Condensation on Horizontal, Integral-Fin Tubes
,” Ph.D Thesis, University of London.
14.
Nusselt
,
W.
, 1916, “
Die Oblerflachenkondensation des Wasserdampfes
,”
Z. Vereines Deutsch. Ing.
,
60
, pp.
541
546
and 569–575.
15.
Honda
,
H.
,
Nozu
,
S.
, and
Mitsumori
,
K.
, 1983, “
Augmentation of Condensation on Finned Tubes by Attaching a Porous Drainage Plate
,”
Proceedings of ASME-JSME Thermal Engineering Joint Conference
, Vol.
3
, pp.
289
295
.
You do not currently have access to this content.