The full-spectrum k-distribution (FSK) method has become the most promising model for radiative transfer in participating media since its introduction a few years ago. It achieves line-by-line (LBL) accuracy for homogeneous media with only a tiny fraction of LBL’s computational cost. Among the variants of the FSK method for dealing with inhomogeneous media, the multiscale FSK (MSFSK) method not only provides a strategy to treat the inhomogeneity problem by introducing an overlap coefficient, it also accommodates a solution to the so-called mixing problem (mixing of k-distributions for different gas species). The evaluation of MSFSK parameters, however, is tedious and excludes the MSFSK method from practical applications. In this paper a new scheme of evaluating k-distributions and overlap coefficients from a database of narrow-band k-distributions is formulated, treating each gas specie as a single scale. The new scheme makes the MSFSK method efficient and convenient for practical applications, and ready to accommodate nongray absorbing particles (such as soot) in the medium. The method virtually eliminates errors caused by uncorrelatedness due to independently varying species concentrations. It was also found that, in addition, breaking up a gas mixture into gas scales reduces the error caused by temperature inhomogeneities. The mathematical development of the new scheme is described and validated; the concept and the implication of the overlap coefficient are discussed. Sample calculations for inhomogeneous media with step changes in species mole fraction and temperature are performed to demonstrate the accuracy of the new scheme by comparison with LBL calculations.

1.
Lacis
,
A. A.
and
Oinas
,
V.
, 1991, “
A Description of the Correlated-k Distribution Method for Modeling Nongray Gaseous Absorption, Thermal Emission, and Multiple Scattering in Vertically Inhomogeneous Atmospheres
,”
J. Geophys. Res.
0148-0227,
96
(
D5
), pp.
9027
9063
.
2.
Goody
,
R. M.
and
Yung
,
Y. L.
, 1989,
Atmospheric Radiation—Theoretical Basis
,
Oxford University Press
, New York, 2nd ed.
3.
Denison
,
M. K.
and
Webb
,
B. W.
, 1993, “
A Spectral Line Based Weighted-Sum-of-Gray-gases Model for Arbitrary RTE Solvers
,”
ASME J. Heat Transfer
0022-1481,
115
, pp.
1004
1012
.
4.
Denison
,
M. K.
and
Webb
,
B. W.
, 1995, “
The Spectral-Line-Based Weighted-Sum-of-Gray-Gases Model in Nonisothermal Nonhomogeneous Media
,”
ASME J. Heat Transfer
0022-1481,
117
, pp.
359
365
.
5.
Rivière
,
Ph.
,
Soufiani
,
A.
,
Perrin
,
M. Y.
,
Riad
,
H.
, and
Gleizes
,
A.
, 1996, “
Air Mixture Radiative Property Modelling in the Temperature Range 10,000–40,000 K
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
56
, pp.
29
45
.
6.
Pierrot
,
L.
,
Rivière
,
Ph.
,
Soufiani
,
A.
, and
Taine
,
J.
, 1999, “
A Fictitious-gas-based Absorption Distribution Function Global Model for Radiative Transfer in Hot Gases
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
62
, pp.
609
624
.
7.
Modest
,
M. F.
and
Zhang
,
H.
, 2002, “
The Full-Spectrum Correlated-k Distribution For Thermal Radiation from Molecular Gas-Particulate Mixtures
,”
ASME J. Heat Transfer
0022-1481,
124
(
1
), pp.
30
38
.
8.
Modest
,
M. F.
, 2003, “
Narrow-Band and Full-Spectrum k-Distributions for Radiative Heat Transfer-Correlated-k Versus scaling approximation
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
76
(
1
), pp.
69
83
.
9.
Zhang
,
H.
and
Modest
,
M. F.
, 2002, “
A Multi-Scale Full-Spectrum Correlated-k Distribution For Radiative Heat Transfer in Inhomogeneous Gas Mixtures
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
73
(
2-5
), pp.
349
360
.
10.
Zhang
,
H.
and
Modest
,
M. F.
, 2003, “
Scalable Multi-Group Full-Spectrum Correlated-k Distributions For Radiative Heat Transfer
,”
ASME J. Heat Transfer
0022-1481,
125
(
3
), pp.
454
461
.
11.
Modest
,
M. F.
and
Riazzi
,
R. J.
, 2004, “
Assembly of Full-Spectrum k-Distributions From a Narrow-Band Database; Effects of Mixing Gases, Gases and Nongray Absorbing Particles, and Mixtures with Nongray Scatterers in Nongray Enclosures
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
90
(
2
), pp.
169
189
.
12.
Goody
,
R. M.
,
West
,
R.
,
Chen
,
L.
, and
Crisp
,
D.
, 1989, “
The Correlated k Method for Radiation Calculations in Nonhomogeneous Atmospheres
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
42
, pp.
539
550
.
13.
Fu
,
Q.
and
Liou
,
K. N.
, 1992, “
On the Correlated k-Distribution Method for Radiative Transfer in Nonhomogeneous Atmospheres
,”
J. Atmos. Sci.
0022-4928,
49
(
22
), pp.
2139
-
2156
.
14.
Rivière
,
P.
,
Soufiani
,
A.
, and
Taine
,
J.
, 1992, “
Correlated-k and Fictitious Gas Methods for H2O near 2.7μm
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
48
, pp.
187
203
.
15.
Rivière
,
P.
,
Scutaru
,
D.
,
Soufiani
,
A.
, and
Taine
,
J.
, 1994, “
A New c−k Data Base Suitable from 300 to 2500 K for Spectrally Correlated Radiative Transfer in CO2–H2O Transparent Gas Mixtures
,” in
Tenth International Heat Transfer Conference
,
Taylor & Francis
, pp.
129
134
.
16.
Rivière
,
P.
,
Soufiani
,
A.
, and
Taine
,
J.
, 1995, “
Correlated-k and Fictitious Gas Model for H2O Infrared Radiation in the Voigt Regime
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
53
, pp.
335
346
.
17.
Modest
,
M. F.
, 2003,
Radiative Heat Transfer
,
Academic Press
, New York, 2nd ed.
18.
Wang
,
A.
and
Modest
,
M. F.
, 2005, “
High Accuracy, Compact Database of Narrow-Band k-Distributions for Water Vapor and Carbon Dioxide
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
93
(1–3)
, pp.
245
261
.
19.
Taine
,
J.
and
Soufiani
,
A.
, 1999, “
Gas IR Radiative Properties: From Spectroscopic Data to Approximate Models
,” in
Advances in Heat Transfer
,
33
,
Academic Press
, New York, pp.
295
414
.
20.
Rothman
,
L. S.
,
Camy-Peyret
,
C.
,
Flaud
,
J.-M.
,
Gamache
,
R. R.
,
Goldman
,
A.
,
Goorvitch
,
D.
,
Hawkins
,
R. L.
,
Schroeder
,
J.
,
Selby
,
J. E. A.
, and
Wattson
,
R. B.
, 2000, “
HITEMP, the High-Temperature Molecular Spectroscopic Database
,” available through http:∕∕www.hitran.com.http:∕∕www.hitran.com.
21.
Tashkun
,
S. A.
,
Perevalov
,
V. I.
,
Bykov
,
A. D.
,
Lavrentieva
,
N. N.
, and
Teffo
,
J.-L.
, 2002, “
Carbon Dioxide Spectroscopic Databank (CDSD)
,” available from ftp:∕∕ftp.iao.ru∕pub∕CDSD-1000ftp:∕∕ftp.iao.ru∕pub∕CDSD-1000.
22.
Zhang
,
H.
and
Modest
,
M. F.
, 2003, “
Multi-Group Full-Spectrum k-Distribution Database For Water Vapor Mixtures in Radiative Transfer Calculations
,”
Int. J. Heat Mass Transfer
0017-9310,
46
(
19
), pp.
3593
3603
.
You do not currently have access to this content.