For modeling the gas heat conduction at arbitrary Knudsen numbers and for a broad range of geometries, we propose a modified temperature-jump method. Within the modified approach, we make a distinction between an inner convex surface and an outer concave surface enclosing the inner surface. For problems, where only a single geometric length is involved, i.e., for large parallel plates, long concentric cylinders and concentric spheres, the new method coincides at any Knudsen number with the interpolation formula according to Sherman, and therefore also with the known solutions of the Boltzmann equation obtained by the four momenta method. For the general case, where more than one geometric length is involved, the modified temperature method is trivially correct in the limit of high pressure and identical with Knudsen’s formula in the limit of low pressure. For intermediate pressure, where there is a lack of known solutions of the Boltzmann equation for general geometries, we present experimental data for the special two-dimensional plate-in-tube configuration and compare it with results of the modified temperature-jump method stating good agreement. The results match slightly better compared to the standard temperature method and significantly better compared to the interpolation formula according to Sherman. For arbitrary geometries and Knudsen numbers, the modified temperature method shows no principal restrictions and may be a simple approximative alternative to the solution of the Boltzmann equation, which is rather cumbersome.

1.
Beikircher
T.
, and
Goldemund
G.
,
1995
, “
Gas heat conduction in an evacuated tube solar collector
,”
Solar Energy
, Vol.
58
, pp.
4
6
.
2.
Beikircher, T., and Spirkl, W., 1996, “Gas heat conduction in evacuated tube solar collectors,” ASME Journal of Solar Energy Engineering, Vol. 118.
3.
Beikircher, T., 1986, Gaswa¨rmeleitung in evakuierten Sonnenkollektoren. Ph.D. thesis, Sektion Physik, Prof. Dr. J. Feldmann, Ludwig Maximilians Universitat Munchen.
4.
Cercignani, C., 1988, The Boltzmann equation and its applications, Springer-Verlag, New York.
5.
Deissler
R. G.
,
1964
, “
An analysis of second-order slip flow and temperature jump boundary conditions for rarefied gases
,”
Int. J. Heat Mass Transfer
, Vol.
7
, pp.
681
694
.
6.
Demirel
Y.
, and
Saxena
S. C.
,
1996
, “
Heat transfer through a low-pressure gas enclosure as a thermal insulator: design and considerations
,”
Journal of Energy Research
, Vol.
20
, pp.
327
338
.
7.
Eucken, A., 1938, Lehrbuch der chemischen Physik. Akademische Verlagsge-sellschaft, Leipzig.
8.
Gombosi, T. I., 1994, Gaskinetic theory, Cambridge University Press, Cambridge, UK.
9.
Ivchenko, I. N., Loyalka, S. K., and Thompson, R. V., 1993, “A method of solving the problem of heat transfer between two cylinders at arbitrary knudsen numbers,” Teplofiz. Vysok. Temp., Vol. 31.
10.
Ivchenko, I. N., Loyalka, S. K., and Thompson, R. V., 1994, “A method for solving linearized problems of the transfer theory for spherical geometry at arbitrary knudsen numbers,” Fluid Dynamics, Vol. 29, No. 6.
11.
Ivchenko, I. N., Loyalka, S. K., and Thompson, R. V., 1995, “On the use of conservation laws in planar slip flow problems,” High temperature, Vol. 33, No. 1.
12.
Kacac, S., and Yener, Y., 1985, Heat conduction, Hemisphere Publishing Corporation and Springer Verlag, New York.
13.
Kennard, E. H., 1938, Kinetic theory of gases, McGraw-Hill, New York.
14.
Knudsen
M.
,
1911
, “
Die molekulare Wa¨rmeleitung der Gase und der Akkommodationskoeffizient
,”
Annalen der Physik
, Vol.
34
, pp.
593
656
.
15.
Lees
L.
,
1965
, “
Kinetic theory description of rarefied gas flow
,”
J. Soc. Indust. Appl. Math.
, Vol.
13
, No.
1
, pp.
278
311
.
16.
Liu, C. Y., and Lees, L., 1961, “Kinetic theory description of plane compressible couette-flow,” Proceedings of the 2nd symposium on rarefied gas dynamics.
17.
Liu
C. Y.
, and
Lees
L.
,
1962
, “
Kinetic theory description of conductive heat transfer from a fine wire
,”
Physics of Fluids
, Vol.
5
, No.
10
, pp.
1137
1148
.
18.
Loyalka
S. K.
, and
Ferziger
J. H.
,
1968
, “
Model dependence of the temperature slip coefficient
,”
Physics of Fluids
, Vol.
11
, No.
8
, pp.
1668
1671
.
19.
Payne
H.
,
1953
, “
Temperature jump and velocity slip at the boundary of a gas
,”
J. of Chemical Physics
, Vol.
21
, No.
12
, pp.
2127
2131
.
20.
Saxena, S. C., and Joshi, R. K., 1989, Thermal accomodation and adsorption coefficients of gases, Hemisphere, New York, 1989.
21.
Scott, R. B., 1959, Cryogenic Engineering, D. van Nostrand, New York.
22.
Sherman, F. S., 1963, “Experiments in the transition regime,” Rarefied gas dynamics, J. A. Laurmann, ed., Academic Press, New York.
23.
Soddy
F.
, and
Berry
A. J.
,
1910
,
Proc. Roy. Soc. London
, Vol.
A83
, pp.
254
264
.
24.
Soddy
F.
, and
Berry
A. J.
,
1911
,
Proc. Royal Soc. London
, Vol.
A84
, pp.
576
585
.
25.
Springer
G. S.
,
1971
, “
Heat transfer in rarefied gases
,”
Advances in heat transfer
, Vol.
7
, pp.
163
218
.
26.
Umemura
K.
, and
Hakura
M.
,
1974
,
Nippon Kagaku Kaishi
, Vol.
3
, pp.
439
444
.
This content is only available via PDF.
You do not currently have access to this content.