Abstract

An experimental study is conducted on bluff-body stabilized premixed flames in a curved, square cross section duct. High flow velocities coupled with a small radius of curvature of the duct induce high centrifugal acceleration normal to the flame sheet. A cylindrical flame holder spans the width of the square cross section and is positioned at the channel midheight. Flame shear layers are stabilized on the radially inward (upper) and outward (lower) edges of the flame holder. Side-view high-speed Schlieren images and high-speed pressure measurements are captured. Static stability, overall pressure loss, and statistics and velocimetry results from the Schlieren images are reported, and results are compared to a straight configuration with no centrifugal acceleration. Two bluff-body diameters are studied to show the effect of flame holder diameter on static stability. For the curved configuration, blowout velocities are higher for the smaller bluff-body diameter, likely due to flow acceleration effects. Blowout velocities are lower for the curved configuration compared to the straight configuration which may be due to the destabilizing Rayleigh–Taylor (RT) effect on the upper flame layer. Overall pressure loss is slightly higher for the curved configuration than the straight configuration. High-speed Schlieren results show centrifugal acceleration causes significant structural and velocimetric asymmetry in the bluff-body wake. In the curved configuration, the upper flame layer displays destabilizing RT instabilities, and the lower flame layer displays stabilizing RT effects. The upper flame shows vigorous RT instabilities which broaden the flame brush and sustain a flame leading edge independent of inlet Reynolds number or velocity. Conversely, the lower flame exhibits suppression of Kelvin–Helmholtz and flame-generated instabilities in the wake, which confines the flame brush and significantly reduces transverse flame velocities. The lower flame edge profile moves toward the channel centerline with increasing inlet Reynolds number. The upper flame in the curved configuration shows higher flame edge velocities than the straight configuration while the lower flame shows velocities closer to zero. The empirical constant to the power law relation for upper flame edge velocities agrees with RT-dominated flame growth theory for this experimental scale and agrees with other RT-dominated flame studies.

References

1.
Rayleigh
,
L.
, and
Strutt
,
J. W.
,
1882
, “
Investigation of the Character of the Equilibrium of an Incompressible Heavy Fluid of Variable Density
,”
Proc. London Math. Soc.
,
s1-14
(
1
), pp.
170
177
.10.1112/plms/s1-14.1.170
2.
Rayleigh
,
L.
, and
Strutt
,
J. W.
,
1916
, “
LIX. On Convection Currents in a Horizontal Layer of Fluid, When the Higher Temperature Is on the Under Side
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
,
32
(
192
), pp.
529
546
.10.1080/14786441608635602
3.
Taylor
,
G. I.
,
1950
, “
The Instability of Liquid Surfaces When Accelerated in a Direction Perpendicular to Their Planes
,”
Proc. R. Soc. London, Ser. A
,
201
(
1065
), pp.
192
196
.10.1098/rspa.1950.0052
4.
Petrasso
,
R. D.
,
1994
, “
Rayleigh's Challenge Endures
,”
Nature
,
367
(
6460
), pp.
217
218
.10.1038/367217a0
5.
Sharp
,
D. H.
,
1984
, “
An Overview of Rayleigh–Taylor Instability
,”
Phys. D: Nonlinear Phenom.
,
12
(
1–3
), pp.
3
18
.10.1016/0167-2789(84)90510-4
6.
Sharp
,
D. H.
, and
Wheeler
,
J. A.
,
1961
, “
Late Stage of Rayleigh–Taylor Instability
,” Institute of Defense Analyses, Alexandria, VA, Technical Report No.
ADA009943
.https://ui.adsabs.harvard.edu/abs/1961ST IN...7532399S/abstract
7.
Cheng
,
B.
,
Glimm
,
J.
,
Li
,
X. L.
, and
Sharp
,
D. H.
,
1999
, “
Subgrid Models and DNS Studies of Fluid Mixing
,”
Proceedings of the 7
th
International Conference on the Physics of Compressible Turbulent Mixing
, St. Petersburg, Russia, pp.
385
390
.
8.
Youngs
,
D. L.
,
1984
, “
Numerical Simulation of Turbulent Mixing by Rayleigh–Taylor Instability
,”
Phys. D: Nonlinear Phenom.
,
12
(
1–3
), pp.
32
44
.10.1016/0167-2789(84)90512-8
9.
Read
,
K. I.
,
1984
, “
Experimental Investigation of Turbulent Mixing by Rayleigh–Taylor Instability
,”
Phys. D: Nonlinear Phenom.
,
12
(
1–3
), pp.
45
58
.10.1016/0167-2789(84)90513-X
10.
Dimonte
,
G.
, and
Schneider
,
M.
,
2000
, “
Density Ratio Dependence of Rayleigh–Taylor Mixing for Sustained and Impulsive Acceleration Histories
,”
Phys. Fluids
,
12
(
2
), pp.
304
321
.10.1063/1.870309
11.
Kucherenko
,
Y.
,
Shibarshev
,
L. I.
,
Chitaikin
,
V. I.
,
Balabin
,
S. A.
, and
Palaev
,
A. P.
,
1991
, “
Experimental Study of the Gravitational Turbulent Mixing Self-Similar Mode
,”
Proceedings of the 3
rd
International Workshop on the Physics of Compressible Turbulent Mixing
, Royaumont, France, June 17–19, pp.
427
454
.
12.
Schneider
,
M. B.
,
Dimonte
,
G.
, and
Remington
,
B.
,
1998
, “
Large and Small Scale Structure in Rayleigh–Taylor Mixing
,”
Phys. Rev. Lett.
,
80
(
16
), pp.
3507
3510
.10.1103/PhysRevLett.80.3507
13.
Youngs
,
D. L.
,
1991
, “
Three-Dimensional Numerical Simulation of Turbulent Mixing by Rayleigh–Taylor Instability
,”
Phys. Fluids A
,
3
(
5
), pp.
1312
1320
.10.1063/1.858059
14.
Glimm
,
J.
,
Grove
,
J. W.
,
Li
,
X. L.
,
Oh
,
W.
, and
Sharp
,
D. H.
,
2001
, “
A Critical Analysis of Rayleigh–Taylor Growth Rates
,”
J. Comput. Phys.
,
169
(
2
), pp.
652
677
.10.1006/jcph.2000.6590
15.
Dimonte
,
G.
,
Youngs
,
D. L.
,
Dimits
,
A.
,
Weber
,
S.
,
Marinak
,
M.
,
Wunsch
,
S.
, and
Garasi
,
C.
, et al.,
2004
, “
A Comparative Study of the Turbulent Rayleigh–Taylor Instability Using High-Resolution Three-Dimensional Numerical Simulations
,”
Phys. Fluids
,
16
(
5
), pp.
1668
1693
.10.1063/1.1688328
16.
Cook
,
A. W.
, and
Dimotakis
,
P. E.
,
2001
, “
Transition Stages of Rayleigh–Taylor Instability Between Miscible Fluids
,”
J. Fluid Mech.
,
443
, pp.
69
99
.10.1017/S0022112001005377
17.
Cook
,
A. W.
, and
Zhou
,
Y.
,
2002
, “
Energy Transfer in Rayleigh–Taylor Instability
,”
Phys. Rev. E
,
66
(
2
), p.
026312
.10.1103/PhysRevE.66.
18.
Cook
,
A. W.
,
Cabot
,
W.
, and
Miller
,
P. L.
,
2004
, “
The Mixing Transition in Rayleigh–Taylor Instability
,”
J. Fluid Mech.
,
511
, pp.
333
362
.10.1017/S0022112004009681
19.
Cabot
,
W. H.
, and
Cook
,
A. W.
,
2006
, “
Reynolds Number Effects on Rayleigh–Taylor Instability With Implications for Type Ia Supernovae
,”
Nat. Phys.
,
2
(
8
), pp.
562
568
.10.1038/nphys361
20.
Cook
,
A. W.
,
2009
, “
Enthalpy Diffusion in Multicomponent Flows
,”
Phys. Fluids
,
21
(
5
), p.
055109
.10.1063/1.3139305
21.
Olson
,
B. J.
,
Lele
,
S. K.
,
Larsson
,
J.
, and
Cook
,
A. W.
,
2011
, “
Nonlinear Effects in the Combined Rayleigh–Taylor/Kelvin–Helmholtz Instability
,”
Phys. Fluids
,
23
(
11
), p.
114107
.10.1063/1.3660723
22.
Livescu
,
D.
,
Wei
,
T.
, and
Petersen
,
M. R.
,
2011
, “
Direct Numerical Simulations of Rayleigh–Taylor Instability
,”
J. Phys.: Conf. Ser.
,
318
(
8
), p.
082007
.10.1088/1742-6596/318/8/082007
23.
Gebhart
,
B.
,
Jaluria
,
Y.
,
Mahajan
,
R.
, and
Sammakia
,
B.
,
1988
, Buoyancy-Induced Flows and Transport,
Hemisphere Publishing Corporation
,
New York
.
24.
Lewis
,
G. D.
,
1971
, “
Combustion in a Centrifugal-Force Field
,”
Symp. (Int.) Combust.
,
13
(
1
), pp.
625
629
.10.1016/S0082-0784(71)80064-4
25.
Lewis
,
G. D.
,
1973
, “
Centrifugal-Force Effects on Combustion
,”
Symp. (Int.) Combust.
,
14
(
1
), pp.
413
419
.10.1016/S0082-0784(73)80040-2
26.
Lewis
,
G. D.
,
Shadowen
,
J. H.
, and
Thayer
,
E. B.
,
1977
, “
Swirling Flow Combustion
,”
J. Energy
,
1
(
4
), pp.
201
205
.10.2514/3.62330
27.
Davies
,
R.
M
., and
Taylor
,
G. I.
,
1950
, “The Mechanics of Large Bubbles Rising Through Extended Liquids and Through Liquids in Tubes,” Proc. R. Soc. A,
200
(
1062
), pp.
375
390
.10.1098/rspa.1950.0023
28.
Scorer
,
R. S.
,
1958
,
Natural Aerodynamics
,
Pergamon Press
,
London
, UK, p.
161
.
29.
Khokhlov
,
A. M.
,
Oran
,
E. S.
, and
Wheeler
,
J. C.
,
1996
, “
Scaling in Buoyancy-Driven Turbulent Premixed Flames
,”
Combust. Flame
,
105
(
1–2
), pp.
28
34
.10.1016/0010-2180(95)00157-3
30.
Hicks
,
E. P.
, and
Rosner
,
R.
,
2013
, “
Gravitationally Unstable Flames: Rayleigh–Taylor Stretching Versus Turbulent Wrinkling
,”
Astrophys. J.
,
771
(
2
), p.
135
.10.1088/0004-637X/771/2/135
31.
Hicks
,
E. P.
,
2014
, “
A Shear Instability Mechanism for the Pulsations of Rayleigh–Taylor Unstable Model Flames
,”
J. Fluid Mech.
,
748
, pp.
618
640
.10.1017/jfm.2014.198
32.
Hicks
,
E. P.
,
2015
, “
Rayleigh–Taylor Unstable Flames—Fast or Faster?
,”
Astrophys. J.
,
803
(
2
), p.
72
.10.1088/0004-637X/803/2/72
33.
Timmes
,
F. X.
, and
Woosley
,
S. E.
,
1992
, “
The Conductive Propagation of Nuclear Flames. I—Degenerate C + O and O + NE + MG White Dwarfs
,”
Astrophys. J.
,
396
(
2
), p.
649
.10.1086/171746
34.
Zingale
,
M.
,
Woosley
,
S. E.
,
Rendleman
,
C. A.
,
Day
,
M. S.
, and
Bell
,
J. B.
,
2005
, “
Three-Dimensional Numerical Simulations of Rayleigh–Taylor Unstable Flames in Type Ia Supernovae
,”
Astrophys. J.
,
632
(
2
), pp.
1021
1034
.10.1086/433164
35.
Bell
,
J. B.
,
Day
,
M. S.
,
Rendleman
,
C. A.
,
Woosley
,
S. E.
, and
Zingale
,
M.
,
2004
, “
Direct Numerical Simulations of Type Ia Supernovae Flames II: The Rayleigh–Taylor Instability
,”
Astrophys. J.
,
608
(
2
), pp.
883
906
.10.1086/420841
36.
Bell
,
J. B.
,
Day
,
M. S.
,
Rendleman
,
C. A.
,
Woosley
,
S. E.
, and
Zingale
,
M.
,
2004
, “
Direct Numerical Simulations of Type Ia Supernovae Flames II: The Landau–Darrieus Instability
,”
Astrophys. J.
,
606
(
2
), pp.
1029
1038
.10.1086/383023
37.
Sykes
,
J. P.
,
Gallagher
,
T. P.
, and
Rankin
,
B. A.
,
2021
, “
Effects of Rayleigh–Taylor Instabilities on Turbulent Premixed Flames in a Curved Rectangular Duct
,”
Proc. Combust. Inst.
,
38
(
4
), pp.
6059
6066
.10.1016/j.proci.2020.06.146
38.
Briones
,
A.
,
Erdmann
,
T.
, and
Sekar
,
B.
,
2014
, “
Effect of Centrifugal Force on Conventional and Alternative Fuel Surrogate Turbulent Premixed Flames
,”
ASME
Paper No. GT2014-27327. 10.1115/GT2014-27327
39.
Anthenien
,
R. A.
,
Mantz
,
R. A.
,
Roquemore
,
W. M.
, and
Sturgess
,
G.
,
2001
, “
Experimental Results for a Novel, High Swirl, Ultra Compact Combustor for Gas Turbine Engines
,”
2nd Joint Meeting of the U.S. Sections of the Combustion Institute
, Oakland, CA, Mar. 25–28, pp.
25
28
.
40.
Zelina
,
J.
,
Shouse
,
D. T.
, and
Neuroth
,
C.
,
2005
, “
High-Pressure Tests of a High-g, Ultra-Compact Combustor
,”
AIAA
Paper No. 2005-3779.10.2514/6.2005-3779
41.
Erdmann
,
T. J.
,
Burrus
,
D. L.
,
Shouse
,
D. T.
,
Gross
,
J. T.
,
Neuroth
,
C.
, and
Caswell
,
A. W.
,
2016
, “
Experimental Studies of a High-g Ultra-Compact Combustor at Elevated Pressure and Temperatures
,”
AIAA
Paper No. 2016-0446.10.2514/6.2016-0446
42.
Anderson
,
W. S., Radtke, J. T., King, P. I., Thornburg, H., Zelina, J., Sekar, B.
, et al.,
2008
, “
Effects of Main Swirl Direction on High-g Combustion
,”
AIAA
Paper No. 2008-4954.10.2514/6.2008-4954
43.
Bohan
,
B. T.
,
2018
, “
Combustion Dynamics and Heat Transfer in an Ultra Compact Combustor
,” Ph.D. dissertation,
Air Force Institute of Technology
,
Wright-Patterson AFB, OH
.
44.
Erdmann
,
T. J.
,
Caswell
,
A. W.
, and
Gutmark
,
E. J.
,
2019
, “
Experimental Study on the Impact of High Centrifugal Body Forces on Constant Pressure, Propane-Air Flames
,”
AIAA
Paper No. 2019-0734.10.2514/6.2019-0734
45.
Lapsa
,
A.
, and
Dahm
,
W. J. A.
,
2007
, “
Experimental Study on the Effects of Large Centrifugal Forces on Step-Stabilized Flames
,”
5th U.S. Combustion Meeting
, San Diego, CA, Mar. 25–27, Paper No. H14.https://www.researchgate.net/publication/276060419_Experimental_Study_on_the_Effects_of_Large_Centrifugal_Forces_on_Step-Stabilized_Flames
46.
Lapsa
,
A. P.
, and
Dahm
,
W. J. A.
,
2009
, “
Hyperacceleration Effects on Turbulent Combustion in Premixed Step-Stabilized Flames
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
1731
1738
.10.1016/j.proci.2008.05.038
47.
Longwell
,
J. P.
,
Chenevey
,
J. E.
,
Clark
,
W. W.
, and
Frost
,
E. E.
,
1948
, “
Flame Stabilization by Baffles in a High Velocity Gas Stream, Part I
,”
Symp. Combust. Flame Explos. Phenom.
,
3
(
1
), pp.
40
44
.10.1016/S1062-2896(49)80007-9
48.
Williams
,
G. C.
,
Hottel
,
H. C.
, and
Scurlock
,
A. C.
,
1948
, “
Flame Stabilization and Propagation in High Velocity Gas Streams
,”
Symp. Combust. Flame Explos. Phenom.
,
3
(
1
), pp.
21
40
.10.1016/S1062-2896(49)80006-7
49.
Weir
,
A.
,
Cullen
,
R. E.
, and
Rogers
,
D. E.
,
1950
, “
Blowoff Velocities of Spherical Flameholders
,” Willow Run Research Center, Ann Arbor, MI, Project No. MX-772.
50.
DeZubay
,
E. A.
,
1950
, “
Characteristics of Disk-Controlled Flame
,”
Aero Dig.
,
61
(
1
), pp.
54
57
.https://books.google.com/books?id=6Sg2AQAAIAAJ
51.
Haddock
,
G. W.
,
1951
, “
Flame-Blowoff Studies of Cylindrical Flame Holders in Channeled Flow
,” Jet Propulsion Laboratory, Pasadena, CA, Progress Report No. 3–24.
52.
Olsen
,
L. O.
,
1951
, “
Seventy-First Report of Progress on the Combustion Chamber Research Program for the Quarter Ending September 30, 1951
,”
National Bureau of Standards
, Gaithersburg, MD, Quarterly Report No. 71.
53.
Ozawa
,
R. I.
,
1971
, “
Survey of Basic Data on Flame Stabilization and Propagation for High Speed Combustion Systems
,” The Marquardt Company, Van Nuys, CA, Report No. AFAPL-TR-70-81.
54.
Chaudhuri
,
S.
,
Kostka
,
S.
,
Tuttle
,
S. G.
,
Renfro
,
M. W.
, and
Cetegen
,
B. M.
,
2011
, “
Blowoff Mechanism of Two Dimensional Bluff-Body Stabilized Turbulent Premixed Flames in a Prototypical Combustor
,”
Combust. Flame
,
158
(
7
), pp.
1358
1371
.10.1016/j.combustflame.2010.11.012
55.
Zukoski
,
E. E.
,
1956
, “
Flame Stabilization on Bluff Bodies at Low and Intermediate Reynolds Numbers
,”
Ph.D. dissertation
,
California Institute of Technology
,
Pasadena, CA
.10.7907/E9V0-GM76
56.
Turns
,
S. R.
,
2000
,
An Introduction to Combustion: Concepts and Applications
, 2nd ed.,
McGraw-Hill
, New York.
You do not currently have access to this content.