Abstract

Biogas is a renewable gaseous fuel and has the potential to replace fossil fuels for spark-ignition engines; however, a higher volumetric proportion of CO2 in biogas degrades the engine characteristics significantly. Biogas upgradation techniques are limited by higher fuel costs, and strenuous modifications would be required for improving engine physical parameters. In this study, experimental investigations were performed with hydrogen-enriched biogas to enhance low operating load limit and engine characteristics, and to the best of authors' knowledge, studies related to operating range and low load enhancement by hydrogen addition in biogas fueled engines are not reported in literature. Gaseous-fuels blending setup was developed to fabricate the gaseous fuel mixtures in desired proportions and moderate amounts of hydrogen (5, 10, 20, and 30% by vol.) were blended with biogas. The experiments were conducted on a single-cylinder SI engine operated at the compression ratio of 10:1 and 1500 rpm for stationary applications. It was found that the coefficient of variation (COV) of indicated mean effective pressure decreased from 10% in case of biogas to 8.69, 6, 3.05, and 1.66%, respectively, for 5, 10, 20, and 30% hydrogen cases at 6 N·m loading condition. Low operating load limit enhanced from 6 N·m in case of biogas to 5.3, 2.2, 1.5, and 0.8 N·m, respectively, for 5, 10, 20, and 30% of hydrogen share in the fuel mixture and brake thermal efficiency also improved with hydrogen enrichment. Carbon-based emissions decreased with hydrogen addition, whereas oxides of nitrogen increased but it was well below the baseline case with pure methane. Overall results indicated that hydrogen enrichment enhances the low load limit and engine characteristics of biogas-fueled SI engines for stationary power generation applications in rural areas.

References

1.
U.S. Briefing
,
2013
, “
International Energy Outlook 2013
,”
U.S. Energy Information Administration
, Washington, DC, Vol.
506
, p.
507
.
2.
Kurien
,
C.
, and
Srivastava
,
A. K.
,
2021
, “
Relative Assessment on E-Vehicle Indirect Carbon Emissions and Emission Control Strategies for Existing Automotive Fleet
,”
Sustainability Clim. Change
,
14
(
6
), pp.
424
435
.10.1089/scc.2021.0052
3.
Kurien
,
C.
,
Srivastava
,
A. K.
, and
Molere
,
E.
,
2020
, “
Emission Control Strategies for Automotive Engines With Scope for Deployment of Solar Based e‐Vehicle Charging Infrastructure
,”
Environ. Prog. Sustainable Energy
,
39
(
1
), p.
13267
.10.1002/ep.13267
4.
United Nations Digital Library
,
2015
, “
Paris Agreement
,” Report of the Conference of the Parties to the United Nations Framework Convention on Climate Change (21st Session),
Paris
, Vol.
4
, Nov. 30–Dec. 13, Paper No.
FCCC/CP/2015/10
, pp.
1
42
.https://www.un.org/en/development/desa/population/migration/generalassembly/docs/globalcompact/FCCC_CP_2015_10_Add.1.pdf
5.
Chen
,
H.
,
He
,
J.
, and
Zhong
,
X.
,
2019
, “
Engine Combustion and Emission Fuelled With Natural Gas: A Review
,”
J. Energy Inst.
,
92
(
4
), pp.
1123
1136
.10.1016/j.joei.2018.06.005
6.
Senecal
,
P. K.
, and
Leach
,
F.
,
2019
, “
Diversity in Transportation: Why a Mix of Propulsion Technologies is the Way Forward for the Future Fleet
,”
Results Eng.
,
4
, p.
100060
.10.1016/j.rineng.2019.100060
7.
Kurien
,
C.
,
Srivastava
,
A. K.
, and
Lesbats
,
S.
,
2020
, “
Experimental and Computational Study on the Microwave Energy Based Regeneration in Diesel Particulate Filter for Exhaust Emission Control
,”
J. Energy Inst.
, 93, pp.
2133
2147
.10.1016/j.joei.2020.05.008
8.
Kurien
,
C.
, and
Mittal
,
M.
,
2022
, “
Review on the Production and Utilization of Green Ammonia as an Alternate Fuel in Dual-Fuel Compression Ignition Engines
,”
Energy Convers. Manage.
,
251
, p.
114990
.10.1016/j.enconman.2021.114990
9.
Zhang
,
L. X.
,
Wang
,
C. B.
, and
Song
,
B.
,
2013
, “
Carbon Emission Reduction Potential of a Typical Household Biogas System in Rural China
,”
J. Clean. Prod
,
47
, pp.
415
421
.10.1016/j.jclepro.2012.06.021
10.
Uusitalo
,
V.
,
Havukainen
,
J.
,
Manninen
,
K.
,
Höhn
,
J.
,
Lehtonen
,
E.
,
Rasi
,
S.
,
Soukka
,
R.
, and
Horttanainen
,
M.
,
2014
, “
Carbon Footprint of Selected Biomass to Biogas Production Chains and GHG Reduction Potential in Transportation Use
,”
Renewable Energy
,
66
, pp.
90
98
.10.1016/j.renene.2013.12.004
11.
MNRE-GOI
,
2021
, “
Bioenergy - Current Status
,” Ministry of New and Renewable Energy (MNRE), Government of India (GOI), accessed Oct. 27, 2021, https://mnre.gov.in/bio-energy/current-status
12.
SATAT,
2021
, “
An Initiative by Ministry of Petroleum and Natural Gas (MoPNG)
,” Sustainable Alternative Towards Affordable Transportation, accessed Oct. 26, 2021 https://satat.co.in/satat/
13.
Awogbemi
,
O.
,
Von Kallon
,
D. V.
, and
Aigbodion
,
V. S.
,
2021
, “
Trends in the Development and Utilization of Agricultural Wastes as Heterogeneous Catalyst for Biodiesel Production
,”
J. Energy Inst.
,
98
, pp.
244
258
.10.1016/j.joei.2021.06.017
14.
Scarlat
,
N.
,
Dallemand
,
J.-F.
, and
Fahl
,
F.
,
2018
, “
Biogas: Developments and Perspectives in Europe
,”
Renewable Energy
,
129
, pp.
457
472
.10.1016/j.renene.2018.03.006
15.
Bharathiraja
,
B.
,
Sudharsana
,
T.
,
Jayamuthunagai
,
J.
,
Praveenkumar
,
R.
,
Chozhavendhan
,
S.
, and
Iyyappan
,
J.
,
2018
, “
Biogas Production–A Review on Composition, Fuel Properties, Feed Stock and Principles of Anaerobic Digestion
,”
Renewable Sustainable Energy Rev.
,
90
, pp.
570
582
.10.1016/j.rser.2018.03.093
16.
Gupta
,
S. K.
, and
Mittal
,
M.
,
2019
, “
Effect of Biogas Composition Variations on Engine Characteristics Including Operational Limits of a Spark-Ignition Engine
,”
ASME J. Eng. Gas Turbines Power
,
141
(
10
), p.
101002
.10.1115/1.4044195
17.
Lim
,
C.
,
Kim
,
D.
,
Song
,
C.
,
Kim
,
J.
,
Han
,
J.
, and
Cha
,
J.-S.
,
2015
, “
Performance and Emission Characteristics of a Vehicle Fueled With Enriched Biogas and Natural Gases
,”
Appl. Energy
,
139
, pp.
17
29
.10.1016/j.apenergy.2014.10.084
18.
Porpatham
,
E.
,
Ramesh
,
A.
, and
Nagalingam
,
B.
,
2008
, “
Investigation on the Effect of Concentration of Methane in Biogas When Used as a Fuel for a Spark Ignition Engine
,”
Fuel
,
87
(
8–9
), pp.
1651
1659
.10.1016/j.fuel.2007.08.014
19.
Gupta
,
S. K.
, and
Mittal
,
M.
,
2021
, “
Predicting the Methane Number of Gaseous Fuels Using an Artificial Neural Network
,”
Biofuels
,
12
(
10
), pp.
1191
1198
.10.1080/17597269.2019.1600455
20.
Gupta
,
S. K.
, and
Mittal
,
M.
,
2020
, “
Assessing the Influence of Compression Ratio on Engine Characteristics Including Operational Limits of a Biogas-Fueled Spark-Ignition Engine
,”
ASME J. Eng. Gas Turbines Power
,
142
(
12
), p.
121008
.10.1115/1.4048564
21.
Gupta
,
S. K.
, and
Mittal
,
M.
,
2019
, “
Effect of Compression Ratio on the Performance and Emission Characteristics, and Cycle-to-Cycle Combustion Variations of a Spark-Ignition Engine Fueled With Bio-Methane Surrogate
,”
Appl. Therm. Eng
,
148
, pp.
1440
1453
.10.1016/j.applthermaleng.2018.11.057
22.
Lim
,
G.
,
Lee
,
S.
,
Park
,
C.
,
Choi
,
Y.
, and
Kim
,
C.
,
2013
, “
Effects of Compression Ratio on Performance and Emission Characteristics of Heavy-Duty SI Engine Fuelled With HCNG
,”
Int. J. Hydrogen Energy
,
38
(
11
), pp.
4831
4838
.10.1016/j.ijhydene.2013.01.188
23.
Ozcan
,
H.
, and
Yamin
,
J. A. A.
,
2008
, “
Performance and Emission Characteristics of LPG Powered Four Stroke SI Engine Under Variable Stroke Length and Compression Ratio
,”
Energy Convers. Manag
,
49
(
5
), pp.
1193
1201
.10.1016/j.enconman.2007.09.004
24.
Abdul Hameed
,
N.
,
Kurien
,
C.
,
Jaychandra
,
R. K.
, and
Mittal
,
M.
, “
Effect of Biomethane Substitution on Combustion Noise and Performance of a Dual Fuel Common Rail Direct Injection Diesel Engine
,”
Environ. Prog. Sustainable Energy
, Early View e13915, pp. 1–14.10.1002/ep.13915
25.
Norddahl
,
B.
,
Roda-Serrat
,
M. C.
,
Errico
,
M.
, and
Christensen
,
K. V.
,
2021
, “
Chapter 6 - Membrane-Based Technology for Methane Separation From Biogas
,”
Emerging Technologies and Biological Systems for Biogas Upgrading
,
N.
Aryal
,
L. D.
Mørck Ottosen
,
M. V.
Wegener Kofoed
, and
D.
Pant
, eds.,
Academic Press
, Elsevier B.V, Amsterdam, The Netherlands, pp.
117
157
.
26.
Ali Abd
,
A.
, and
Roslee Othman
,
M.
,
2022
, “
Biogas Upgrading to Fuel Grade Methane Using Pressure Swing Adsorption: Parametric Sensitivity Analysis on an Industrial Scale
,”
Fuel
,
308
, p.
121986
.10.1016/j.fuel.2021.121986
27.
Nie
,
H.
,
Jiang
,
H.
,
Chong
,
D.
,
Wu
,
Q.
,
Xu
,
C.
, and
Zhou
,
H.
,
2013
, “
Comparison of Water Scrubbing and Propylene Carbonate Absorption for Biogas Upgrading Process
,”
Energy Fuels
,
27
(
6
), pp.
3239
3245
.10.1021/ef400233w
28.
Tuinier
,
M. J.
, and
van Sint Annaland
,
M.
,
2012
, “
Biogas Purification Using Cryogenic Packed-Bed Technology
,”
Ind. Eng. Chem. Res.
,
51
(
15
), pp.
5552
5558
.10.1021/ie202606g
29.
Awe
,
O. W.
,
Zhao
,
Y.
,
Nzihou
,
A.
,
Minh
,
D. P.
, and
Lyczko
,
N.
,
2017
, “
A Review of Biogas Utilisation, Purification and Upgrading Technologies
,”
Waste Biomass Valorization
,
8
(
2
), pp.
267
283
.10.1007/s12649-016-9826-4
30.
Khan
,
M. U.
,
Lee
,
J. T. E.
,
Bashir
,
M. A.
,
Dissanayake
,
P. D.
,
Ok
,
Y. S.
,
Tong
,
Y. W.
,
Shariati
,
M. A.
,
Wu
,
S.
, and
Ahring
,
B. K.
,
2021
, “
Current Status of Biogas Upgrading for Direct Biomethane Use: A Review
,”
Reneweable Sustainable Energy Rev.
,
149
, p.
111343
.10.1016/j.rser.2021.111343
31.
Gupta
,
S. K.
, and
Mittal
,
M.
,
2019
, “
Analysis of Cycle-To-Cycle Combustion Variations in a Spark-Ignition Engine Operating Under Various Biogas Compositions
,”
Energy Fuels
,
33
(
12
), pp.
12421
12430
.10.1021/acs.energyfuels.9b02344
32.
Sun
,
X.
,
Liu
,
H.
,
Duan
,
X.
,
Guo
,
H.
,
Li
,
Y.
,
Qiao
,
J.
,
Liu
,
Q.
, and
Liu
,
J.
,
2022
, “
Effect of Hydrogen Enrichment on the Flame Propagation, Emissions Formation and Energy Balance of the Natural Gas Spark Ignition Engine
,”
Fuel
,
307
, p.
121843
.10.1016/j.fuel.2021.121843
33.
Park
,
C.
,
Park
,
S.
,
Lee
,
Y.
,
Kim
,
C.
,
Lee
,
S.
, and
Moriyoshi
,
Y.
,
2011
, “
Performance and Emission Characteristics of a SI Engine Fueled by Low Calorific Biogas Blended With Hydrogen
,”
Int. J. Hydrogen Energy
,
36
(
16
), pp.
10080
10088
.10.1016/j.ijhydene.2011.05.018
34.
Jeong
,
C.
,
Kim
,
T.
,
Lee
,
K.
,
Song
,
S.
, and
Chun
,
K. M.
,
2009
, “
Generating Efficiency and Emissions of a Spark-Ignition Gas Engine Generator Fuelled With Biogas–Hydrogen Blends
,”
Int. J. Hydrogen Energy
,
34
(
23
), pp.
9620
9627
.10.1016/j.ijhydene.2009.09.099
35.
Xin
,
Z.
,
Jian
,
X.
,
Shizhuo
,
Z.
,
Xiaosen
,
H.
, and
Jianhua
,
L.
,
2013
, “
The Experimental Study on Cyclic Variation in a Spark Ignited Engine Fueled With Biogas and Hydrogen Blends
,”
Int. J. Hydrogen Energy
,
38
(
25
), pp.
11164
11168
.10.1016/j.ijhydene.2013.01.097
36.
Porpatham
,
E.
,
Ramesh
,
A.
, and
Nagalingam
,
B.
,
2007
, “
Effect of Hydrogen Addition on the Performance of a Biogas Fuelled Spark Ignition Engine
,”
Int. J. Hydrogen Energy
,
32
(
12
), pp.
2057
2065
.10.1016/j.ijhydene.2006.09.001
37.
Porpatham
,
E.
,
Ramesh
,
A.
, and
Nagalingam
,
B.
,
2017
, “
Effect of Spark Timing on the Performance of a Spark Ignition Engine Running on Biogas–Hydrogen Blends
,”
Biofuels
,
8
(
6
), pp.
635
642
.10.1080/17597269.2015.1110779
38.
Porpatham
,
E.
,
Ramesh
,
A.
, and
Nagalingam
,
B.
,
2018
, “
Experimental Studies on the Effects of Enhancing the Concentration of Oxygen in the Inducted Charge of a Biogas Fuelled Spark Ignition Engine
,”
Energy
,
142
, pp.
303
312
.10.1016/j.energy.2017.10.025
39.
Wang
,
J.
,
Duan
,
X.
,
Liu
,
Y.
,
Wang
,
W.
,
Liu
,
J.
,
Lai
,
M.-C.
,
Li
,
Y.
, and
Guo
,
G.
,
2020
, “
Numerical Investigation of Water Injection Quantity and Water Injection Timing on the Thermodynamics, Combustion and Emissions in a Hydrogen Enriched Lean-Burn Natural Gas SI Engine
,”
Int. J. Hydrogen Energy
,
45
(
35
), pp.
17935
17952
.10.1016/j.ijhydene.2020.04.146
40.
Zhang
,
R.
,
Chen
,
L.
,
Pan
,
J.
,
Wei
,
H.
,
Zhou
,
L.
, and
Liu
,
C.
,
2020
, “
Effects of Direct-Injected Hydrogen Addition on Methane Combustion Performance in an Optical SI Engine With High Compression-Ratio
,”
Int. J. Hydrogen Energy
,
45
(
4
), pp.
3284
3293
.10.1016/j.ijhydene.2019.11.220
41.
Bundele
,
H.
,
Kurien
,
C.
, and
Mittal
,
M.
,
2022
, “
Experimental Study of Cycle-to-Cycle Variations in a Spark-Ignition Engine Fueled With Biogas and Surrogate of Bio-Methane
,”
SAE
Paper No. 2022-01-5049.10.4271/2022-01-5049
42.
Rogers
,
D. R.
,
2010
,
Engine Combustion: Pressure Measurement and Analysis
,
SAE International
, Warrendale, PA.
43.
Ryan
,
T. W.
, III
,
Callahan
,
T. J.
, and
King
,
S. R.
,
1993
, “
Engine Knock Rating of Natural Gases—Methane Number
,”
ASME J. Eng. Gas Turbines Power
,
115
(
4
), pp.
769
776
.10.1115/1.2906773
44.
Wang
,
M. Q.
, and
Huo
,
H.
,
2009
, “
Transportation: Meeting the Dual Challenges of Achieving Energy Security and Reducing Greenhouse Gas Emissions
,”
Front. Energy Power Eng. China
,
3
(
2
), pp.
212
225
.10.1007/s11708-009-0016-y
45.
Klimstra
,
J.
,
1986
, “
Interchangeability of Gaseous Fuels—The Importance of the Wobbe-Index
,”
SAE
Paper No. 861578, pp.
962
972
.10.4271/861578
46.
Zhao
,
L.
,
Moiz
,
A. A.
,
Som
,
S.
,
Fogla
,
N.
,
Bybee
,
M.
,
Wahiduzzaman
,
S.
,
Mirzaeian
,
M.
,
Millo
,
F.
, and
Kodavasal
,
J.
,
2018
, “
Examining the Role of Flame Topologies and in-Cylinder Flow Fields on Cyclic Variability in Spark-Ignited Engines Using Large-Eddy Simulation
,”
Int. J. Engine Res
,
19
(
8
), pp.
886
904
.10.1177/1468087417732447
47.
Shigarkanthi
,
V. M.
,
Porpatham
,
E.
, and
Ramesh
,
A.
,
2005
, “
Experimental Investigation and Modeling of Cycle by Cycle Variations in a Gas Fuelled SI Engine
,”
SAE
Paper No. 2005-01-3480.10.4271/2005-01-3480
48.
Heywood
,
J. B.
,
2018
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill Education
, New York.
49.
Wei
,
H.
,
Feng
,
D.
,
Pan
,
J.
,
Shao
,
A.
, and
Pan
,
M.
,
2017
, “
Knock Characteristics of SI Engine Fueled With n-Butanol in Combination With Different EGR Rate
,”
Energy
,
118
, pp.
190
196
.10.1016/j.energy.2016.11.134
50.
Ueda
,
A.
,
Nisida
,
K.
,
Matsumura
,
Y.
,
Ichikawa
,
T.
,
Nakashimada
,
Y.
,
Endo
,
T.
, and
Kim
,
W.
,
2021
, “
Effects of Hydrogen and Carbon Dioxide on the Laminar Burning Velocities of Methane–Air Mixtures
,”
J. Energy Inst.
,
99
, pp.
178
185
.10.1016/j.joei.2021.09.007
51.
Stiesch
,
G.
,
2003
,
Modeling Engine Spray and Combustion Processes
,
Springer Science & Business Media
, Springer Verlag, Berlin.
52.
Bhasker
,
J. P.
, and
Porpatham
,
E.
,
2017
, “
Effects of Compression Ratio and Hydrogen Addition on Lean Combustion Characteristics and Emission Formation in a Compressed Natural Gas Fuelled Spark Ignition Engine
,”
Fuel
,
208
, pp.
260
270
.10.1016/j.fuel.2017.07.024
53.
Owston
,
R.
,
Magi
,
V.
, and
Abraham
,
J.
,
2007
, “
Wall Interactions of Hydrogen Flames Compared With Hydrocarbon Flames
,”
SAE
Paper No. 2007-01-1466, pp.
993
1002
.10.4271/2007-01-1466
54.
Pan
,
H.
,
Pournazeri
,
S.
,
Princevac
,
M.
,
Miller
,
J. W.
,
Mahalingam
,
S.
,
Khan
,
M. Y.
,
Jayaram
,
V.
, and
Welch
,
W. A.
,
2014
, “
Effect of Hydrogen Addition on Criteria and Greenhouse Gas Emissions for a Marine Diesel Engine
,”
Int. J. Hydrogen Energy
,
39
(
21
), pp.
11336
11345
.10.1016/j.ijhydene.2014.05.010
55.
Karagöz
,
Y.
,
Sandalcı
,
T.
,
Yüksek
,
L.
,
Dalkılıç
,
A. S.
, and
Wongwises
,
S.
,
2016
, “
Effect of Hydrogen–Diesel Dual-Fuel Usage on Performance, Emissions and Diesel Combustion in Diesel Engines
,”
Adv. Mech. Eng.
,
8
(
8
), pp.
1
13
.10.1177/1687814016664458
56.
Ling
,
F. F.
,
2011
,
Fundamentals of Combustion Processes
, Mechanical Engineering Series, Vol.
302
,
Springer
, New York.
57.
Chintala
,
V.
, and
Subramanian
,
K. A.
,
2015
, “
Experimental Investigations on Effect of Different Compression Ratios on Enhancement of Maximum Hydrogen Energy Share in a Compression Ignition Engine Under Dual-Fuel Mode
,”
Energy
,
87
, pp.
448
462
.10.1016/j.energy.2015.05.014
You do not currently have access to this content.