Abstract

In this paper, we report an experimental investigation on the influence of colored noise (generated by the Ornstein–Uhlenbeck (OU) process) on thermoacoustic coupling in an electro-acoustic Rijke tube simulator. In the absence of noise, the simulator exhibits subcritical Hopf bifurcation. Although noise in a practical system has a finite correlation time, yet the system identification methods are based on the assumption of white noise. In this study, we investigate the effects of correlation time, and intensity of colored noise on the estimation of the growth rates of acoustic oscillations determined using Fokker–Planck equation in stable, bistable, and linearly unstable regions. Subsequently, we compare the findings against results obtained considering white noise approximations. We report the observed deviation of the estimated growth rates from the actual values as a function of noise intensity and correlation time. We find that with the colored noise model, the deviation in the estimated growth rates lies within the range of 0–10% compared to the deviation of 5–25% observed considering the white noise approximation. We also report that increasing noise amplitudes leads up to a deviation of approximately 30% in the estimated growth rates from the actual values.

References

1.
Lieuwen
,
T. C.
, and
Yang
,
V.
,
2005
,
Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling
,
American Institute of Aeronautics and Astronautics
, Reston, VA.
2.
Bernhard
,
R. J.
,
Hall
,
H. R.
, and
Jones
,
J. D.
,
1992
, “
Adaptive-Passive Noise Control
,”
Internoise
, Vol.
139
, pp.
427
427
,
Noise Control Foundation
.
3.
Noiray
,
N.
, and
Schuermans
,
B.
,
2012
, “
Theoretical and Experimental Investigations on Damper Performance for Suppression of Thermoacoustic Oscillations
,”
J. Sound Vib.
,
331
(
12
), pp.
2753
2763
.10.1016/j.jsv.2012.02.005
4.
Lieuwen
,
T. C.
,
2002
, “
Experimental Investigation of Limit-Cycle Oscillations in an Unstable Gas Turbine Combustor
,”
J. Propul. Power
,
18
(
1
), pp.
61
67
.10.2514/2.5898
5.
Kabiraj
,
L.
, and
Sujith
,
R. I.
,
2011
, “
Investigation of Subcritical Instability in Ducted Premixed Flames
,”
ASME
Paper No. GT2011-46155.10.1115/GT2011-46155
6.
Kabiraj
,
L.
,
Saurabh
,
A.
,
Wahi
,
P.
, and
Sujith
,
R.
,
2012
, “
Route to Chaos for Combustion Instability in Ducted Laminar Premixed Flames
,”
Chaos
,
22
(
2
), p.
023129
.10.1063/1.4718725
7.
Kabiraj
,
L.
,
Saurabh
,
A.
,
Karimi
,
N.
,
Sailor
,
A.
,
Mastorakos
,
E.
,
Dowling
,
A. P.
, and
Paschereit
,
C. O.
,
2015
, “
Chaos in an Imperfectly Premixed Model Combustor
,”
Chaos
,
25
(
2
), p.
023101
.10.1063/1.4906943
8.
Juniper
,
M. P.
,
2011
, “
Triggering in the Horizontal Rijke Tube: Non-Normality, Transient Growth and Bypass Transition
,”
J. Fluid Mech.
,
667
, pp.
272
308
.10.1017/S0022112010004453
9.
Waugh
,
I. C.
, and
Juniper
,
M. P.
,
2011
, “
Triggering in a Thermoacoustic System With Stochastic Noise
,”
Int. J. Spray Combust. Dyn.
,
3
(
3
), pp.
225
241
.10.1260/1756-8277.3.3.225
10.
Jegadeesan
,
V.
, and
Sujith
,
R.
,
2013
, “
Experimental Investigation of Noise Induced Triggering in Thermoacoustic Systems
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
3175
3183
.10.1016/j.proci.2012.05.003
11.
Lieuwen
,
T.
, and
Banaszuk
,
A.
,
2005
, “
Background Noise Effects on Combustor Stability
,”
J. Propul. Power
,
21
(
1
), pp.
25
31
.10.2514/1.5549
12.
Gopalakrishnan
,
E.
, and
Sujith
,
R.
,
2015
, “
Effect of External Noise on the Hysteresis Characteristics of a Thermoacoustic System
,”
J. Fluid Mech.
,
776
, pp.
334
353
.10.1017/jfm.2015.330
13.
Noiray
,
N.
, and
Schuermans
,
B.
,
2013
, “
Deterministic Quantities Characterizing Noise Driven Hopf Bifurcations in Gas Turbine Combustors
,”
Int. J. Non-Linear Mech.
,
50
, pp.
152
163
.10.1016/j.ijnonlinmec.2012.11.008
14.
Noiray
,
N.
,
2017
, “
Linear Growth Rate Estimation From Dynamics and Statistics of Acoustic Signal Envelope in Turbulent Combustors
,”
ASME J. Eng. Gas Turbines Power
,
139
(
4
), p.
041503
.10.1115/1.4034601
15.
Boujo
,
E.
, and
Noiray
,
N.
,
2017
, “
Robust Identification of Harmonic Oscillator Parameters Using the Adjoint Fokker–Planck Equation
,”
Proc. R. Soc. A
,
473
(
2200
), p.
20160894
.10.1098/rspa.2016.0894
16.
Noiray
,
N.
, and
Denisov
,
A.
,
2017
, “
A Method to Identify Thermoacoustic Growth Rates in Combustion Chambers From Dynamic Pressure Time Series
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3843
3850
.10.1016/j.proci.2016.06.092
17.
Seywert
,
C. N.
,
2001
, “
Combustion Instabilities: Issues in Modeling and Control
,”
Ph.D. thesis
,
California Institute of Technology
, Pasedena, CA.https://thesis.library.caltech.edu/338/
18.
Burnley
,
V. S.
,
1996
, “
Nonlinear Combustion Instabilities and Stochastic Sources
,”
Ph.D. thesis
,
California Institute of Technology
, Pasedena, CA.https://thesis.library.caltech.edu/1241/
19.
Vishnoi
,
N.
,
Wahi
,
P.
,
Saurabh
,
A.
, and
Kabiraj
,
L.
,
2021
, “
On the Effect of Noise Induced Dynamics on Linear Growth Rates of Oscillations in an Electroacoustic Rijke Tube Simulator
,”
ASME
Paper No. GT2021-58691
. 10.1115/GT2021-58691
20.
Kabiraj
,
L.
,
Steinert
,
R.
,
Saurabh
,
A.
, and
Paschereit
,
C. O.
,
2015
, “
Coherence Resonance in a Thermoacoustic System
,”
Phys. Rev. E
,
92
(
4
), p.
042909
.10.1103/PhysRevE.92.042909
21.
Saurabh
,
A.
,
Kabiraj
,
L.
,
Steinert
,
R.
, and
Oliver Paschereit
,
C.
,
2017
, “
Noise-Induced Dynamics in the Subthreshold Region in Thermoacoustic Systems
,”
ASME J. Eng. Gas Turbines Power
,
139
(
3
), p, 031508.10.1115/1.4034544
22.
Lee
,
M.
,
Zhu
,
Y.
,
Li
,
L. K.
, and
Gupta
,
V.
,
2019
, “
System Identification of a Low-Density Jet Via Its Noise-Induced Dynamics
,”
J. Fluid Mech.
,
862
, pp.
200
215
.10.1017/jfm.2018.961
23.
Rajaram
,
R.
, and
Lieuwen
,
T.
,
2009
, “
Acoustic Radiation From Turbulent Premixed Flames
,”
J. Fluid Mech.
,
637
, pp.
357
385
.10.1017/S0022112009990681
24.
Bonciolini
,
G.
,
Boujo
,
E.
, and
Noiray
,
N.
,
2016
, “
Effects of Turbulence-Induced Colored Noise on Thermoacoustic Instabilities in Combustion Chambers
,”
International Symposium: Thermoacoustic Instabilities in Gas Turbines and Rocket Engines
, ETH Zürich, Munich, Germany, May 30–June 2.https://www.researchgate.net/publication/307428867_Effects_of_turbulenceinduced_colored_noise_on_thermoacoustic_instabilities_in_combustion_chambers
25.
Bonciolini
,
G.
,
Boujo
,
E.
, and
Noiray
,
N.
,
2017
, “
Output-Only Parameter Identification of a Colored-Noise-Driven Van-Der-Pol Oscillator: Thermoacoustic Instabilities as an Example
,”
Phys. Rev. E
,
95
(
6
), p.
062217
.10.1103/PhysRevE.95.062217
26.
Li
,
X.
,
Wang
,
Y.
,
Wang
,
N.
, and
Zhao
,
D.
,
2020
, “
Stochastic Properties of Thermoacoustic Oscillations in an Annular Gas Turbine Combustion Chamber Driven by Colored Noise
,”
J. Sound Vib.
,
480
, p.
115423
.10.1016/j.jsv.2020.115423
27.
Feldman
,
K. T.
, Jr
,
1968
, “
Review of the Literature on Rijke Thermoacoustic Phenomena
,”
J. Sound Vib.
,
7
(
1
), pp.
83
89
.10.1016/0022-460X(68)90159-4
28.
Heckl
,
M. A.
,
1990
, “
Non-Linear Acoustic Effects in the Rijke Tube
,”
Acta Acust.
,
72
(
1
), pp.
63
71
.https://www.ingentaconnect.com/content/dav/aaua/1990/00000072/00000001/art00010
29.
Raun
,
R.
,
Beckstead
,
M.
,
Finlinson
,
J.
, and
Brooks
,
K.
,
1993
, “
A Review of Rijke Tubes, Rijke Burners and Related Devices
,”
Prog. Energy Combust. Sci.
,
19
(
4
), pp.
313
364
.10.1016/0360-1285(93)90007-2
30.
Nicoud
,
F.
, and
Wieczorek
,
K.
,
2009
, “
About the Zero Mach Number Assumption in the Calculation of Thermoacoustic Instabilities
,”
Int. J. Spray Combust. Dyn.
,
1
(
1
), pp.
67
111
.10.1260/175682709788083335
31.
Gupta
,
V.
,
Saurabh
,
A.
,
Paschereit
,
C. O.
, and
Kabiraj
,
L.
,
2017
, “
Numerical Results on Noise-Induced Dynamics in the Subthreshold Regime for Thermoacoustic Systems
,”
J. Sound Vib.
,
390
, pp.
55
66
.10.1016/j.jsv.2016.12.004
32.
Matveev
,
K. I.
, and
Culick
,
F.
,
2003
, “
A Model for Combustion Instability Involving Vortex Shedding
,”
Combust. Sci. Technol.
,
175
(
6
), pp.
1059
1083
.10.1080/00102200302349
33.
Sterling
,
J.
, and
Zukoski
,
E.
,
1991
, “
Nonlinear Dynamics of Laboratory Combustor Pressure Oscillations
,”
Combust. Sci. Technol.
,
77
(
4–6
), pp.
225
238
.10.1080/00102209108951729
34.
Ma
,
J.
,
Xiao
,
T.
,
Hou
,
Z.
, and
Xin
,
H.
,
2008
, “
Coherence Resonance Induced by Colored Noise Near Hopf Bifurcation
,”
Chaos
,
18
(
4
), p.
043116
.10.1063/1.3013178
35.
Miguel
,
M. S.
, and
Toral
,
R.
,
2000
, “
Stochastic Effects in Physical Systems
,”
In Instabilities and Nonequilibrium Structures VI
,
Springer
,
Dordrecht
, The Netherlands, pp.
35
127
.
36.
Beato
,
V.
,
Sendina-Nadal
,
I.
,
Gerdes
,
I.
, and
Engel
,
H.
,
2008
, “
Coherence Resonance in a Chemical Excitable System Driven by Coloured Noise
,”
Philos. Trans. R. Soc., A
366
(
1864
), pp.
381
395
.10.1098/rsta.2007.2096
37.
Stratonovich
,
R. L.
,
1967
,
Topics in the Theory of Random Noise
, Vol.
2
,
CRC Press
, Boca Raton, FL.
38.
Gardiner
,
C. W
, et al.,
1985
,
Handbook of Stochastic Methods
, Vol.
3
,
Springer
,
Berlin
.
39.
Wiesenfeld
,
K.
,
1985
, “
Noisy Precursors of Nonlinear Instabilities
,”
J. Stat. Phys.
,
38
(
5–6
), pp.
1071
1097
.10.1007/BF01010430
40.
Pikovsky
,
A. S.
, and
Kurths
,
J.
,
1997
, “
Coherence Resonance in a Noise-Driven Excitable System
,”
Phys. Rev. Lett.
,
78
(
5
), pp.
775
778
.10.1103/PhysRevLett.78.775
41.
Neiman
,
A.
,
Saparin
,
P. I.
, and
Stone
,
L.
,
1997
, “
Coherence Resonance at Noisy Precursors of Bifurcations in Nonlinear Dynamical Systems
,”
Phys. Rev. E
,
56
(
1
), pp.
270
273
.10.1103/PhysRevE.56.270
42.
Ushakov
,
O.
,
Wünsche
,
H.-J.
,
Henneberger
,
F.
,
Khovanov
,
I.
,
Schimansky-Geier
,
L.
, and
Zaks
,
M.
,
2005
, “
Coherence Resonance Near a Hopf Bifurcation
,”
Phys. Rev. Lett.
,
95
(
12
), p.
123903
.10.1103/PhysRevLett.95.123903
You do not currently have access to this content.