Abstract

The complex aero-thermal coupling between fluid and solid regions within high-pressure turbines makes it important to perform multidisciplinary design optimization of high-pressure turbine blades. However, most published works failed to consider the correlations between blade profiles and cooling structures that could best compromise the aerodynamic and thermal performance of high-pressure turbine blades, and the related optimization problems were so far limited to single- or bi-objective ones. The critical drawbacks of these available studies are mainly due to the reduced accuracies of the adopted methods when dealing with large numbers of design variables and objectives. To tackle these difficulties, a dimension reduction-based multidisciplinary design optimization method is proposed and validated through an aero-thermal design optimization of the NASA-C3X vane with a total of 39 design variables and five performance objectives. The main novelties of this proposed method lie in a hybrid dimension reduction of design space by means of the proper orthogonal decomposition and global sensitivity analysis methods, as well as the integration of the ensemble surrogate model and the reference vector evolutionary algorithm for optimal solutions. The results show that the prediction accuracy of the ensemble surrogate model for each performance objective is enhanced, even though the dimensionalities of design space are reduced. Complicated compromises exist among the five performance objectives under consideration. For NASA-C3X vane, the optimal design helps reduce irreversible flow losses especially wake losses while reducing the volumes with high-temperature and high-temperature gradient near the trailing edge is mainly responsible for the reduced irreversible losses due to heat transfer. The outcomes of this work are particularly relevant for the advanced design optimization methods for high pressure turbines.

References

1.
Braun
,
J.
,
Paniagua
,
G.
, and
Falempin
,
F.
,
2021
, “
Aerothermal Optimization of Bladeless Turbines
,”
ASME J. Eng. Gas Turbines Power
,
143
(
3
), p. 0
31023
.10.1115/1.4049355
2.
Nowak
,
G.
, and
Wroblewski
,
W.
,
2011
, “
Optimization of Blade Cooling System With Use of Conjugate Heat Transfer Approach
,”
Int. J. Therm. Sci.
,
50
(
9
), pp.
1770
1781
.10.1016/j.ijthermalsci.2011.04.001
3.
Verstraete
,
T.
,
Amaral
,
S.
,
Van den Braembussche
,
R.
, and
Arts
,
T.
,
2010
, “
Design and Optimization of the Internal Cooling Channels of a High Pressure Turbine Blade-Part II: Optimization
,”
ASME J. Turbomach.
,
132
(
2
), p. 0
21014
.10.1115/1.3104615
4.
Chi
,
Z. R.
,
Ren
,
J.
, and
Jiang
,
H. D.
,
2014
, “
Coupled Aerothermodynamics Optimization for the Cooling System of a Turbine Vane
,”
ASME J. Turbomach.
,
136
(
5
), p.
051008
.10.1115/1.4025178
5.
Liu
,
W.
,
Wen
,
F. B.
,
Luo
,
L.
,
Cui
,
T.
, and
Wang
,
S. T.
,
2018
, “
Three-Dimensional Aerodynamic Optimization of Turbine Blade Profile Considering Heat Transfer Performance
,”
ASME
Paper No. GT 2018-77252.10.1115/GT2018-77252
6.
Jiang
,
Y. T.
,
Lin
,
H. F.
,
Yue
,
G. Q.
,
Zheng
,
Q.
, and
Xu
,
X. L.
,
2017
, “
Aero-Thermal Optimization on Multi-Rows Film Cooling of a Realistic Marine High Pressure Turbine Vane
,”
Appl. Therm. Eng.
,
111
, pp.
537
549
.10.1016/j.applthermaleng.2016.09.143
7.
Song
,
Y. J.
,
Guo
,
Z. D.
,
Song
,
L. M.
,
Li
,
J.
, and
Feng
,
Z. P.
,
2017
, “
Knowledge-Based Aero-Thermal Multi-Disciplinary Design Optimization of a High Temperature Blade
,”
ASME
Paper No. GT2017-63880.10.1115/GT2017-63880
8.
Ostergard
,
T.
,
Jensen
,
R. L.
, and
Maagaard
,
S. E.
,
2018
, “
A Comparison of Six Metamodeling Techniques Applied to Building Performance Simulations
,”
Appl. Energy
,
211
, pp.
89
103
.10.1016/j.apenergy.2017.10.102
9.
Service
,
T. C.
,
2010
, “
A No Free Lunch Theorem for Multi-Objective Optimization
,”
Inform Process Lett.
,
110
(
21
), pp.
917
923
.10.1016/j.ipl.2010.07.026
10.
Deb
,
K.
, and
Jain
,
H.
,
2014
, “
An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints
,”
IEEE T Evolut. Comput.
,
18
(
4
), pp.
577
601
.10.1109/TEVC.2013.2281535
11.
Ju
,
Y. P.
,
2021
, “
A Dimension-Reduction Metamodeling Approach to Simulation-Based Uncertainty Quantification Problems With High Dimensionalities
,”
Proc. Inst. Mech. Eng. C-J Mech. Eng. Sci.
,
236
(
1
), pp.
43
62
.10.1177/0954406221991189
12.
Diez
,
M.
,
Campana
,
E. F.
, and
Stern
,
F.
,
2015
, “
Design-Space Dimensionality Reduction in Shape Optimization by Karhunen-Loeve Expansion
,”
Comput Method Appl. Mech. Eng.
,
283
, pp.
1525
1544
.10.1016/j.cma.2014.10.042
13.
D'Agostino
,
D.
,
Serani
,
A.
, and
Diez
,
M.
,
2020
, “
Design-Space Assessment and Dimensionality Reduction: An Off-Line Method for Shape Reparameterization in Simulation-Based Optimization
,”
Ocean Eng.
,
197
, p.
106852
.10.1016/j.oceaneng.2019.106852
14.
Cinquegrana
,
D.
, and
Iuliano
,
E.
,
2018
, “
Investigation of Adaptive Design Variables Bounds in Dimensionality Reduction for Aerodynamic Shape Optimization
,”
Comput Fluids
,
174
, pp.
89
109
.10.1016/j.compfluid.2018.07.012
15.
Zhu
,
Y. J.
,
Ju
,
Y. P.
, and
Zhang
,
C. H.
,
2020
, “
Proper Orthogonal Decomposition Assisted Inverse Design Optimization Method of Compressor Cascade Airfoil
,”
Aerosp. Sci. Technol.
,
105
(
10
), p.
105955
.10.1016/j.ast.2020.105955
16.
Romei
,
A.
, and
Persico
,
G.
,
2018
, “
Novel Shape Parameterization Technique Applied to the Optimization of a Supersonic Orc Turbine Cascade
,”
ASME
Paper No. GT2018-76732.10.1115/GT2018-76732
17.
Zhao
,
Y.
,
Sun
,
C. L.
,
Zeng
,
J. C.
,
Tan
,
Y.
, and
Zhang
,
G. C.
,
2021
, “
A Surrogate-Ensemble Assisted Expensive Many-Objective Optimization
,”
Knowl.-Based Syst.
,
211
, p.
106520
.10.1016/j.knosys.2020.106520
18.
Cheng
,
R.
,
Jin
,
Y. C.
,
Olhofer
,
M.
, and
Sendhoff
,
B.
,
2016
, “
A Reference Vector Guided Evolutionary Algorithm for Many-Objective Optimization
,”
IEEE T Evolut. Comput.
,
20
(
5
), pp.
773
791
.10.1109/TEVC.2016.2519378
19.
Chugh
,
T.
,
Jin
,
Y. C.
,
Miettinen
,
K.
,
Hakanen
,
J.
, and
Sindhya
,
K.
,
2018
, “
A Surrogate-Assisted Reference Vector Guided Evolutionary Algorithm for Computationally Expensive Many-Objective Optimization
,”
IEEE T Evolut. Comput.
,
22
(
1
), pp.
129
142
.10.1109/TEVC.2016.2622301
20.
Ju
,
Y. P.
,
Feng
,
Y.
, and
Zhang
,
C. H.
,
2021
, “
Conjugate Heat Transfer Simulation and Entropy Generation Analysis of Gas Turbine Blades
,”
J. Eng. Gas Turb. Power
,
143
(
8
), p. 0
81012
.10.1115/1.4049989
21.
Hylton
,
L. D.
,
Mihelc
,
M. S.
,
Turner
,
E. R.
,
Nealy
,
D. A.
, and
York
,
R. E.
,
1983
, “
Analytical and Experimental Evaluation of the Heat Transfer Distribution Over the Surfaces of Turbine Vanes
,” NASA Lewis Research Center, Cleveland, OH, NASA Report No.
168015
.https://ntrs.nasa.gov/citations/19830020105
22.
Ali
,
A.
,
Cocchi
,
L.
,
Picchi
,
A.
,
Facchini
,
B.
, and
Cubeda
,
S.
,
2021
, “
Development and Application of an Internal Heat Transfer Measurement Technique for Cooled Real Engine Components
,”
ASME J. Eng. Gas Turbines Power
,
143
(
10
), p.
101018
.10.1115/1.4051641
23.
Barbosa
,
J. S.
,
Sicchieri
,
L. C.
,
Dourado
,
A. D. P.
, Jr.
, and
Cavalini
,
A. A.
, Jr.
, and
Steffen
,
V.
,
2021
, “
Kriging Approach Dedicated to Represent Hydrodynamic Bearings
,”
ASME J. Eng. Gas Turbines Power
,
143
(
6
), p.
061016
.10.1115/1.4049307
24.
Wang
,
T.
,
Tian
,
Y. S.
,
Yin
,
Z.
,
Zhang
,
D. Y.
,
Ma
,
M. Z.
,
Gao
,
Q.
, and
Tan
,
C. Q.
, “
Real-Time Variable Geometry Triaxial Gas Turbine Model for Hardware-in-the-Loop Simulation Experiments
,”
ASME J. Eng. Gas Turbines Power
,
140
(
9
), p.
092603
.10.1115/1.4038992
25.
Ju
,
Y. P.
,
Parks
,
G.
, and
Zhang
,
C. H.
,
2017
, “
A Bisection-Sampling-Based SVR-HDMR Metamodeling Technique for High-Dimensional Problems
,”
Proc. Inst. Mech. Eng. C-J Mech. Eng. Sci.
,
231
(
12
), pp.
2173
2186
.10.1177/0954406216629504
26.
Wu
,
K. P.
, and
Wang
,
S. D.
,
2009
, “
Choosing the Kernel Parameters for Support Vector Machines by the Inter-Cluster Distance in the Feature Space
,”
Pattern Recogn.
,
42
(
5
), pp.
710
717
.10.1016/j.patcog.2008.08.030
27.
Wang
,
H. D.
,
Jin
,
Y. C.
, and
Doherty
,
J.
,
2017
, “
Committee-Based Active Learning for Surrogate-Assisted Particle Swarm Optimization of Expensive Problems
,”
IEEE Trans. Cybern.
,
47
(
9
), pp.
2664
2677
.10.1109/TCYB.2017.2710978
28.
Toal
,
D. J. J.
,
Bressloff
,
N. W.
,
Keane
,
A. J.
, and
Holden
,
C. M. E.
,
2010
, “
Geometric Filtration Using Proper Orthogonal Decomposition for Aerodynamic Design Optimization
,”
AIAA J.
,
48
(
5
), pp.
916
928
.10.2514/1.41420
29.
Qin
,
R. H.
,
Ju
,
Y. P.
,
Stephen
,
S.
, and
Zhang
,
C. H.
,
2021
, “
Metamodel-Driven Data Mining Model to Support Centrifugal Compressor Design
,”
ASME J. Turbomach.
,
143
(
12
), p.
121013
.10.1115/1.4051713
30.
Wunsch
,
D.
,
Nigro
,
R.
,
Coussement
,
G.
, and
Hirsch
,
C.
,
2019
, “
Non-Intrusive Probabilistic Collocation Method for Operational, Geometrical, and Manufacturing Uncertainties in Engineering Practice
,”
Uncertainty Management for Robust Industrial Design in Aeronautics: Findings and Best Practice Collected During UMRIDA, a Collaborative Research Project (2013-2016) Funded by the European Union
,
Springer
,
Cham
, pp.
143
167
.
31.
Blum
,
A. L.
, and
Langley
,
P.
,
1997
, “
Selection of Relevant Features and Examples in Machine Learning
,”
Artif. Intell.
,
97
(
1–2
), pp.
245
271
.10.1016/S0004-3702(97)00063-5
32.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evolut. Comput.
,
6
(
2
), pp.
182
197
.10.1109/4235.996017
33.
Kanungo
,
T.
,
Mount
,
D. M.
,
Netanyahu
,
N. S.
,
Piatko
,
C. D.
,
Silverman
,
R.
, and
Wu
,
A. Y.
,
2002
, “
An Efficient k-Means Clustering Algorithm: Analysis and Implementation
,”
IEEE Trans. Pattern Anal.
,
24
(
7
), pp.
881
892
.10.1109/TPAMI.2002.1017616
34.
Li
,
M. Q.
,
Zhen
,
L. L.
, and
Yao
,
X.
,
2017
, “
How to Read Many-Objective Solution Sets in Parallel Coordinates
,”
IEEE Comput. Intell. Mag.
,
12
(
4
), pp.
88
100
.10.1109/MCI.2017.2742869
35.
Chatel
,
A.
,
Verstraete
,
T.
, and
Coussement
,
G.
,
2020
, “
Multipoint Optimization of an Axial Turbine Cascade Using a Hybrid Algorithm
,”
ASME
Paper No. TURBO-19-1284.10.1115/TURBO-19-1284
You do not currently have access to this content.