Abstract

A turbulent lifted H2/N2 jet flame in a vitiating coflow environment is numerically investigated, using the Flamelet generated manifold (FGM) combustion model with large eddy simulations (LES). Due to the hot vitiated H2/air coflow, the primary stabilization mechanism is the auto-ignition followed by a premixed flame. In addition to using H2 as a fuel, this flame poses two other modeling challenges: (i) the auto-ignition, which is a transient chemistry-driven phenomenon; (ii) the existence of multiple combustion regimes, e.g., diffusion at auto-ignition location but premixed in the postflame. A series of LES/FGM simulations are completed in this work by reducing the coflow temperature from 1045 K to 1000 K. The FGM model can predict the characteristics of the flame by showing a lifted flame. It also accurately predicts the trend in the flame lift-off distance with a change in the coflow temperature. The current results are compared for mixture fraction, temperature, and OH mass fraction at multiple locations, which have also been correctly captured. It is noted that for a high coflow temperature (and hence a low lift-off distance), the flame's lift-off is highly sensitive to the inlet boundary conditions and the mesh resolution near the jet entry. A relatively coarse mesh is used for all the simulations, which is generated using a careful strategy that not only resolves the jet instabilities near the fuel inlet but also keeps the overall mesh count low and allows for a large computational time step. A systematic sensitivity analysis of the computational speed is also performed. This work provides some useful guidelines for simulating the H2 diluted flames using the FGM model, which may be valuable to the gas turbine industry.

References

1.
Van Oijen
,
J.
, and
De Goey
,
L.
,
2000
, “
Modelling of Premixed Laminar Flames Using Flamelet-Generated Manifolds
,”
Combust. Sci. Technol.
,
161
(
1
), pp.
113
137
.10.1080/00102200008935814
2.
Verma
,
I.
,
Yadav
,
R.
,
Orsino
,
S.
,
Sharkey
,
P.
, and
Nakod
,
P.
,
2019
, “
Large Eddy Simulations of Premixed Bluff Body Stabilized Flame Using Detailed Chemistry With Flamelet Generated Manifold: Grid Sensitivity Analysis
,”
AIAA
Paper No. AIAA 2019-0454.10.2514/6.2019-0454
3.
Yadav
,
R.
,
Verma
,
I.
,
Orsino
,
S.
,
Sharkey
,
P.
,
Nakod
,
P.
, and
Li
,
S.
,
2019
, “
Bluff-Body Stabilized Flame Simulations Using SBES in Combination With the Flamelet Generated Manifold Combustion Model
,”
AIAA
Paper No. AIAA 2019-0455.10.2514/6.2019-0455
4.
ETN Global
,
2020
, “
The ETN Hydrogen Gas Turbines Report: The Path Towards a Zero-Carbon Gas Turbine
,” European Turbine Network (ETN) Global, Brussels, Belgium, Report.https://etn.global/wp-content/uploads/2020/01/ETN-Hydrogen-Gas-Turbines-report.pdf
5.
Cabra
,
R.
,
Myhrvold
,
T.
,
Chen
,
J.
,
Dibble
,
R.
,
Karpetis
,
A.
, and
Barlow
,
R.
,
2002
, “
Simultaneous Laser Raman-Rayleigh-LIF Measurements and Numerical Modeling Results of a Lifted Turbulent H2/N2 Jet Flame in a Vitiated Coflow
,”
Proc. Combust. Inst.
,
29
(
2
), pp.
1881
1888
.10.1016/S1540-7489(02)80228-0
6.
Oh
,
J.
,
Khan
,
Q. S.
, and
Yoon
,
Y.
,
2010
, “
Nitrogen Dilution Effect on Flame Stability in a Lifted Non-Premixed Turbulent Hydrogen Jet With Coaxial Air
,”
Fuel
,
89
(
7
), pp.
1492
1498
.10.1016/j.fuel.2009.10.001
7.
Tacke
,
M.
,
Geyer
,
D.
,
Hassel
,
E.
, and
Janicka
,
J.
,
1998
, “
A Detailed Investigation of the Stabilization Point of Lifted Turbulent Diffusion Flames
,”
Symposium (International) on Combustion
, The University of Colorado at Boulder, Boulder, CO, Aug. 2–7,
Vol.
27
, pp.
1157
1165
.10.1016/S0082-0784(98)80518-3
8.
Cabra
,
R.
,
Chen
,
J.-Y.
,
Dibble
,
R.
,
Karpetis
,
A.
, and
Barlow
,
R.
,
2005
, “
Lifted Methane–Air Jet Flames in a Vitiated Coflow
,”
Combust. Flame
,
143
(
4
), pp.
491
506
.10.1016/j.combustflame.2005.08.019
9.
Jones
,
W.
, and
Navarro-Martinez
,
S.
,
2007
, “
Large Eddy Simulation of Autoignition With a Subgrid Probability Density Function Method
,”
Combust. Flame
,
150
(
3
), pp.
170
187
.10.1016/j.combustflame.2007.04.003
10.
El Sayed
,
A.
, and
Fraser
,
R. A.
,
2014
, “
Consistent Conditional Moment Closure Modelling of a Lifted Turbulent Jet Flame Using the presumed-PDF Approach
,”
J. Combust.
,
2014
, pp.
1
25
.10.1155/2014/507459
11.
Castellani
,
S.
,
Nassini
,
P. C.
, and
Andreini
,
A.
,
2021
, “
Numerical Modelling of a Non-Premixed H2 Flame Representative of Flame Holding in Premixing Systems
,”
10th European Combustion Meeting (ECM10)
, Virtual Edition, Apr. 14–15.
12.
Benim
,
A. C.
, and
Pfeiffelmann
,
B.
,
2019
, “
Comparison of Combustion Models for Lifted Hydrogen Flames Within RANS Framework
,”
Energies
,
13
(
1
), p.
152
.10.3390/en13010152
13.
Cao
,
R. R.
,
Pope
,
S. B.
, and
Masri
,
A. R.
,
2005
, “
Turbulent Lifted Flames in a Vitiated Coflow Investigated Using Joint PDF Calculations
,”
Combust. Flame
,
142
(
4
), pp.
438
453
.10.1016/j.combustflame.2005.04.005
14.
Navarro-Martinez
,
S.
, and
Kronenburg
,
A.
,
2011
, “
Flame Stabilization Mechanisms in Lifted Flames
,”
Flow, Turbul. Combust.
,
87
(
2–3
), pp.
377
406
.10.1007/s10494-010-9320-1
15.
Ansys, Inc.
,
2022
,
Ansys Fluent Theory Guide. Release 2022R1
,
Ansys, Inc
.,
Canonsburg, PA
.
16.
Benim
,
A. C.
,
Pfeiffelmann
,
B.
,
Ocłoń
,
P.
, and
Taler
,
J.
,
2019
, “
Computational Investigation of a Lifted Hydrogen Flame With LES and FGM
,”
Energy
,
173
, pp.
1172
1181
.10.1016/j.energy.2019.02.133
17.
Xia
,
Y.
,
Verma
,
I.
,
Zore
,
K.
, and
Sharkey
,
P.
,
2020
, “
SBES/FGM Simulation of Forced Response of a Premixed Bluff-Body Stabilized Flame
,”
AIAA
Paper No. AIAA 2020-0175.10.2514/6.2020-0175
18.
Xia
,
Y.
,
Sharkey
,
P.
,
Orsino
,
S.
,
Kuron
,
M.
,
Menter
,
F.
,
Verma
,
I.
,
Malecki
,
R.
, and
Sen
,
B.
,
2020
, “
SBES/FGM Simulation of Film-Cooled Surface Heat Transfer and Near-Wall Reaction
,”
ASME
Paper No. GT2020-14717.10.1115/GT2020-14717
19.
Xia
,
Y.
,
Sharkey
,
P.
,
Orsino
,
S.
,
Kuron
,
M.
,
Menter
,
F.
,
Verma
,
I.
,
Malecki
,
R.
, and
Sen
,
B.
,
2021
, “
Stress-Blended Eddy Simulation/Flamelet Generated Manifold Simulation of Film-Cooled Surface Heat Transfer and Near-Wall Reaction
,”
ASME J. Turbomach.
,
143
(
1
), p.
011008
.10.1115/1.4049133
20.
Xia
,
Y.
,
Stopford
,
P.
,
Sharkey
,
P.
, and
Verma
,
I.
,
2021
, “
Dynamic Mesh Adaption for Scale-Resolving Reacting Flow Simulations
,”
ASME
Paper No. GT2021-59100.10.1115/GT2021-59100
21.
Xia
,
Y.
,
Sharkey
,
P.
,
Verma
,
I.
,
Khaware
,
A.
, and
Cokljat
,
D.
,
2022
, “
Prediction of Thermoacoustic Instability and Fluid-Structure Interactions for Gas Turbine Combustor
,”
ASME
Paper No. GT2022-78296.10.1115/GT2022-78296
22.
Xia
,
Y.
,
Verma
,
I.
,
Nakod
,
P.
,
Yadav
,
R.
,
Orsino
,
S.
, and
Li
,
S.
,
2022
, “
Numerical Simulations of a Lifted Hydrogen Jet Flame Using Flamelet Generated Manifold Approach
,”
ASME
Paper No. GT2022-80733.10.1115/GT2022-80733
23.
Nakod
,
P.
,
Yadav
,
R.
,
Rajeshirke
,
P.
, and
Orsino
,
S.
,
2014
, “
A Comparative Computational Fluid Dynamics Study on Flamelet-Generated Manifold and Steady Laminar Flamelet Modeling for Turbulent Flames
,”
ASME J. Eng. Gas Turbines Power
,
136
(
8
), p.
081504
.10.1115/1.4026806
24.
Yadav
,
R.
, and
Nakod
,
P.
,
2015
, “
Numerical Computation of a Turbulent Lifted Flame Using Flamelet Generated Manifold With Different Progress Variable Definitions
,”
ASME
Paper No. GTINDIA2015-1406.10.1115/GTINDIA2015-1406
25.
Nguyen
,
P.-D.
,
Vervisch
,
L.
,
Subramanian
,
V.
, and
Domingo
,
P.
,
2010
, “
Multidimensional Flamelet-Generated Manifolds for Partially Premixed Combustion
,”
Combust. Flame
,
157
(
1
), pp.
43
61
.10.1016/j.combustflame.2009.07.008
26.
Lodier
,
G.
,
Vervisch
,
L.
,
Moureau
,
V.
, and
Domingo
,
P.
,
2011
, “
Composition-Space Premixed Flamelet Solution With Differential Diffusion for in Situ Flamelet-Generated Manifolds
,”
Combust. Flame
,
158
(
10
), pp.
2009
2016
.10.1016/j.combustflame.2011.03.011
27.
Shur
,
M. L.
,
Spalart
,
P. R.
,
Strelets
,
M. K.
, and
Travin
,
A. K.
,
2014
, “
Synthetic Turbulence Generators for RANS-LES Interfaces in Zonal Simulations of Aerodynamic and Aeroacoustic Problems
,”
Flow, Turbulence Combustion
,
93
(
1
), pp.
63
92
.10.1007/s10494-014-9534-8
28.
Ansys, Inc.
,
2022
,
Ansys Fluent User's Guide. Release 2022R1
,
Ansys, Inc
.,
Canonsburg, PA
.
29.
Lilly
,
D. K.
,
1992
, “
A Proposed Modification of the Germano Subgrid-Scale Closure Method
,”
Phys. Fluids A: Fluid Dyn.
,
4
(
3
), pp.
633
635
.10.1063/1.858280
30.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
,
1990
, “
Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Summer Workshop. Center for Turbulence Research
, Stanford, CA, Dec..http://web.stanford.edu/group/ctr/Summer/SP90/06_GERMANO.pdf
31.
Kim
,
S.-E.
,
2004
, “
Large Eddy Simulation Using Unstructured Meshes and Dynamic Subgrid-Scale Turbulence Models
,”
AIAA
Paper No. 2004-2548
.http://courses.washington.edu/mengr544/handouts-08/AIAA-2004-kim.pdf
32.
Li
,
J.
,
Zhao
,
Z.
,
Kazakov
,
A.
, and
Dryer
,
F.
,
2003
, “
An Updated Comprehensive Kinetic Model for H2 Combustion
,”
Fall Technical Meeting of the Eastern States Section of the Combustion Institute
, Penn State University, University Park, PA, Oct.
26
29
.10.1002/kin.20026
33.
Hu
,
Y.
, and
Kurose
,
R.
,
2019
, “
Large-Eddy Simulation of Turbulent Autoigniting Hydrogen Lifted Jet Flame With a Multi-Regime Flamelet Approach
,”
Int. J. Hydrogen Energy
,
44
(
12
), pp.
6313
6324
.10.1016/j.ijhydene.2019.01.096
34.
Patil
,
S.
,
2021
, “Realize the Sustainable Promise of Hydrogen Combustion,”
Ansys, Inc
.,
Canonsburg, PA
, accessed 23 November 2021, https://www.ansys.com/en-gb/blog/sustainable-promise-of-hydrogen-combustion
35.
Gregory
,
P. S.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S. W. C.
,
Gardiner
,
J.
,
Lissianski
,
V. V.
, and
Qin
,
Z.
,
2021
, “
GRI-Mech 3.0
,” UC Berkeley, accessed Nov. 23 2021, http://combustion.berkeley.edu/gri-mech/
36.
Wu
,
Z.
,
Starner
,
S.
, and
Bilger
,
R.
,
2003
, “
Lift-Off Heights of Turbulent H2/N2 Jet Flames in a Vitiated Co-Flow
,”
Proceedings of the 2003 Australian Symposium on Combustion and the 8th Australian Flame Days
, Monash University, Melbourne, Australia, Dec.
8
9
.https://slideplayer.com/slide/2413222/
37.
Gordon
,
R.
,
Starner
,
S.
,
Masri
,
A.
, and
Bilger
,
R.
,
2005
, “
Further Characterisation of Lifted Hydrogen and Methane Flames Issuing Into a Vitiated Coflow
,”
Proceedings of the 5th Asia-Pacific Conference on Combustion
, The University of Adelaide, Adelaide, Australia, July 17–20, pp.
333
336
.https://www.researchgate.net/publication/242240241_Further_Characterisation_of_Lifted_Hydrogen_and_Methane_Flames_Issuing_into_a_Vitiated_Coflow
You do not currently have access to this content.