Abstract

The transient dynamics of air flow running through the moving intake valve gaps in combustion cylinders is crucial to the performance of spark-ignition direct-injection engines. However, research on the air flow behavior in the vicinity of valve exits is still limited. In this work, transient air flow characteristics of a custom-designed dual-valve system under the operating conditions of a fixed valve lift and a vibrating valve lift at two frequencies are experimentally investigated. The velocity vector field measured using planar particle image velocimetry (PIV) is first analyzed in time domain based on temporal mean and root-mean-square (RMS) values. Comparison of temporal mean flow fields reveals the difference in flow pattern while RMS represents the variation of intake air jet velocity along the inlet path of the vibration-affected jet. Instantaneous snapshots provide direct analysis of the valve vibration-induced intake air jet behavior. Furthermore, investigation in frequency domain extends insights into the dominant spectral components of flow structures. Fast Fourier transform (FFT) applied to every vector on the velocity field yields a vibration frequency affected zone (VFAZ), indicating the regions where the effect of valve vibration is significant. By employing dynamic mode decomposition (DMD) method, the spatio-temporal PIV results are decomposed into modes with specific frequencies. Reconstructed flow field using modes with the valve operating frequency visually unveils a cyclic vortex structure near the valve exit. In summary, this study elucidates the mechanism of near-valve intake air flow impingement and interaction behavior induced by the valve vibrating motion.

References

1.
Baumgarten
,
C.
,
2006
,
Mixture Formation in Internal Combustion Engines
,
Springer Science & Business Media
, Berlin.
2.
Borée
,
J.
, and
Miles
,
P. C.
,
2014
, “
In-Cylinder Flow
,”
Encyclopedia Automotive Engineering
, John Wiley & Sons, Ltd., Hoboken, NJ, pp.
1
31
.10.1002/9781118354179.auto119
3.
Stansfield
,
P.
,
Wigley
,
G.
,
Justham
,
T.
,
Catto
,
J.
, and
Pitcher
,
G.
,
2007
, “
PIV Analysis of In-Cylinder Flow Structures Over a Range of Realistic Engine Speeds
,”
Exp. Fluids
,
43
(
1
), pp.
135
146
.10.1007/s00348-007-0335-x
4.
Zhang
,
X.
,
Wang
,
T.
,
Jia
,
M.
,
Li
,
W.
,
Cui
,
L.
, and
Zhang
,
X.
,
2015
, “
The Interactions of In-Cylinder Flow and Fuel Spray in a Gasoline Direct Injection Engine With Variable Tumble
,”
ASME J. Eng. Gas Turbines Power
,
137
(
7
), p.
071507
.10.1115/1.4029208
5.
Kampanis
,
N.
,
Arcoumanis
,
C.
,
Kometani
,
S.
,
Kato
,
R.
, and
Kinoshita
,
H.
,
2006
, “
Flow and Mixture Distribution in a High-Speed Five-Valve Direct Injected Gasoline Engine
,”
Int. J. Engine Res.
,
7
(
2
), pp.
143
166
.10.1243/146808705X30639
6.
Deshmukh
,
A.
,
Vishwanathan
,
G.
,
Bode
,
M.
,
Pitsch
,
H.
,
Khosravi
,
M.
, and
van Bebber
,
D.
,
2018
, “
Characterization of Hollow Cone Gas Jets in the Context of Direct Gas Injection in Internal Combustion Engines
,”
SAE Int. J. Fuels Lubr.
,
11
(
4
), pp.
353
378
.10.4271/2018-01-0296
7.
Weclas
,
M.
,
Melling
,
A.
, and
Durst
,
F.
,
1998
, “
Flow Separation in the Inlet Valve Gap of Piston Engines
,”
Prog. Energy Combust. Sci.
,
24
(
3
), pp.
165
195
.10.1016/S0360-1285(97)00023-3
8.
Buhl
,
S.
,
Hartmann
,
F.
,
Kaiser
,
S. A.
, and
Hasse
,
C.
,
2017
, “
Investigation of an IC Engine Intake Flow Based on Highly Resolved LES and PIV
,”
Oil Gas Sci. Technol.
,
72
(
3
), p.
15
.10.2516/ogst/2017012
9.
Rose
,
W. G.
,
1962
, “
A Swirling Round Turbulent Jet: 1—Mean-Flow Measurements
,”
ASME J. Appl. Mech.
,
29
(
4
), pp.
615
625
.1210.1115/1.3640644
10.
Vernet
,
R.
,
Thomas
,
L.
, and
David
,
L.
,
2009
, “
Analysis and Reconstruction of a Pulsed Jet in Crossflow by Multi-Plane Snapshot Pod
,”
Exp. Fluids
,
47
(
4–5
), pp.
707
720
.10.1007/s00348-009-0730-6
11.
Semlitsch
,
B.
,
Wang
,
Y.
, and
Mihăescu
,
M.
,
2015
, “
Flow Effects Due to Valve and Piston Motion in an Internal Combustion Engine Exhaust Port
,”
Energy Convers. Manage.
,
96
, pp.
18
30
.10.1016/j.enconman.2015.02.058
12.
Cleary
,
D.
, and
Silvas
,
G.
,
2007
, “
Unthrottled Engine Operation With Variable Intake Valve Lift, Duration, and Timing
,”
SAE Trans.,
116
, pp.
774
787
.https://www.jstor.org/stable/44699314
13.
Ge
,
P.
,
2020
, “
Experimental Investigations of Spatiotemporal Characteristics of Intake Valve-Induced Transient Flow Dynamics
,” Ph.D. thesis,
Shanghai Jiao Tong University
,
Shanghai, China
.
14.
Ameen
,
M. M.
,
Yang
,
X.
,
Kuo
,
T.-W.
, and
Som
,
S.
,
2017
, “
Parallel Methodology to Capture Cyclic Variability in Motored Engines
,”
Int. J. Engine Res.
,
18
(
4
), pp.
366
377
.10.1177/1468087416662544
15.
Willman
,
C.
,
Scott
,
B.
,
Stone
,
R.
, and
Richardson
,
D.
,
2020
, “
Quantitative Metrics for Comparison of In-Cylinder Velocity Fields Using Particle Image Velocimetry
,”
Exp. Fluids
,
61
(
2
), pp.
1
16
.10.1007/s00348-020-2897-9
16.
Rowley
,
C. W.
,
Mezić
,
I.
,
Bagheri
,
S.
,
Schlatter
,
P.
, and
Henningson
,
D. S.
,
2009
, “
Spectral Analysis of Nonlinear Flows
,”
J. Fluid Mech.
,
641
, pp.
115
127
.10.1017/S0022112009992059
17.
Schmid
,
P. J.
,
2010
, “
Dynamic Mode Decomposition of Numerical and Experimental Data
,”
J. Fluid Mech.
,
656
, pp.
5
28
.10.1017/S0022112010001217
18.
Qin
,
W.
,
Zhou
,
L.
,
Liu
,
D.
,
Jia
,
M.
, and
Xie
,
M.
,
2019
, “
Investigation of In-Cylinder Engine Flow Quadruple Decomposition Dynamical Behavior Using Proper Orthogonal Decomposition and Dynamic Mode Decomposition Methods
,”
ASME J. Eng. Gas Turbines Power
,
141
(
8
), p.
081004
.10.1115/1.4042725
19.
Liu
,
M.
,
Zhao
,
F.
,
Li
,
X.
,
Xu
,
M.
, and
Hung
,
D. L.
,
2020
, “
Dynamic Mode Decomposition for Extracting Cycle-to-Cycle Variation of SIDI Engine In-Cylinder Flow Under Motoring Condition
,”
ASME
Paper No. ICEF2020-2917.10.1115/ICEF2020-2917
20.
Ge
,
P.
,
Zhao
,
F.
,
Hung
,
D.
,
Pan
,
H.
, and
Xu
,
M.
,
2017
, “
Distortion Mapping Correction of In-Cylinder Flow Field Measurements Through Optical Liner Using Gaussian Optics Model
,”
SAE
Paper No. 2017-01-0615.10.4271/2017-01-0615
21.
Zhao
,
F.
,
Liu
,
M.
,
Ge
,
P.
,
Hung
,
D. L.
,
Li
,
X.
,
Xu
,
M.
,
Yang
,
X.
, and
Idicheria
,
C.
,
2019
, “
Multi-Plane Time-Resolved Particle Image Velocimetry (PIV) Flow Field Measurements in an Optical Spark-Ignition Direct-Injection (SIDI) Engine for Large-Eddy Simulation (LES) Model Validations
,”
Oil Gas Sci. Technol.
,
74
, p.
52
.10.2516/ogst/2019022
22.
Tu
,
J. H.
,
2013
, “
Dynamic Mode Decomposition: Theory and Applications
,”
Ph.D. thesis
,
Princeton University
,
Princeton, NJ
.https://cwrowley.princeton.edu/theses/tu.pdf
You do not currently have access to this content.