Abstract

This paper presents the geometry optimization of a single stage radial turbine for an organic ranking cycle (ORC) system operating over a pressure ratio of 9. The specific fluid used in this investigation is R1233zd (E), but the methodology applies to other organic fluids as well. The ORC system is used to recover excess waste heat from the operation of an offshore oil and gas platform in the gulf of Thailand and its conditions will be replicated at pilot plant level. The geometry is optimized for the highest total-to-static efficiency using nongradient based algorithms to allow for wide design space. Firstly, a one-dimensional meanline geometry is optimized, which is followed by a computational fluid dynamics (cfd) optimization in three-dimensional using a parameterized model. cfd is used to validate and calibrate the meanline model as well as to understand the flow and the sensitivity of the design parameters not captured by the low-order model. Moreover, the flow field of the successful designs is analyzed by cfd to identify the main flow structures that explain the difference in performance among the designs. The nonideal gas thermophysical properties of R1233zd (E) are calculated using equations of state to account for the nonideal gas behavior.

References

1.
Forman
,
C.
,
Muritala
,
I. K.
,
Pardemann
,
R.
, and
Meyer
,
B.
,
2016
, “
Estimating the Global Waste Heat Potential
,”
Renewable Sustainable Energy Rev.
,
57
, pp.
1568
1579
.10.1016/j.rser.2015.12.192
2.
Agathokleous
,
R.
,
Bianchi
,
G.
,
Panayiotou
,
G.
,
Aresti
,
L.
,
Argyrou
,
M. C.
,
Georgiou
,
G. S.
,
Tassou
,
S. A.
,
Jouhara
,
H.
,
Kalogirou
,
S. A.
,
Florides
,
G. A.
, and
Christodoulides
,
P.
,
2019
, “
Waste Heat Recovery in the eu Industry and Proposed New Technologies
,”
Energy Procedia
,
161
, pp.
489
496
.10.1016/j.egypro.2019.02.064
3.
Di Battista
,
D.
,
Di Bartolomeo
,
M.
,
Villante
,
C.
, and
Cipollone
,
R.
,
2018
, “
On the Limiting Factors of the Waste Heat Recovery Via ORC-Based Power Units for on-the-Road Transportation Sector
,”
Energy Convers. Manage.
,
155
, pp.
68
77
.10.1016/j.enconman.2017.10.091
4.
Rosset
,
K.
,
Mounier
,
V.
,
Guenat
,
E.
, and
Schiffmann
,
J.
,
2018
, “
Multi-Objective Optimization of Turbo-Orc Systems for Waste Heat Recovery on Passenger Car Engines
,”
Energy
,
159
, pp.
751
765
.10.1016/j.energy.2018.06.193
5.
Lecompte
,
S.
,
Huisseune
,
H.
,
Van Den Broek
,
M.
,
Vanslambrouck
,
B.
, and
De Paepe
,
M.
,
2015
, “
Review of Organic Rankine Cycle (Orc) Architectures for Waste Heat Recovery
,”
Renewable Sustainable Energy Rev.
,
47
, pp.
448
461
.10.1016/j.rser.2015.03.089
6.
Zhang
,
H.
,
Guan
,
X.
,
Ding
,
Y.
, and
Liu
,
C.
,
2018
, “
Emergy Analysis of Organic Rankine Cycle (Orc) for Waste Heat Power Generation
,”
J. Cleaner Prod.
,
183
, pp.
1207
1215
.10.1016/j.jclepro.2018.02.170
7.
Rahbar
,
K.
,
Mahmoud
,
S.
,
Al-Dadah
,
R. K.
,
Moazami
,
N.
, and
Mirhadizadeh
,
S. A.
,
2017
, “
Review of Organic Rankine Cycle for Small-Scale Applications
,”
Energy Convers. Manage.
,
134
, pp.
135
155
.10.1016/j.enconman.2016.12.023
8.
Tavakkoli
,
S.
,
Lokare
,
O. R.
,
Vidic
,
R. D.
, and
Khanna
,
V.
,
2016
, “
Systems-Level Analysis of Waste Heat Recovery Opportunities From Natural Gas Compressor Stations in the United States
,”
ACS Sustainable Chem. Eng.
,
4
(
7
), pp.
3618
3626
.10.1021/acssuschemeng.5b01685
9.
Chen
,
C.-L.
,
Li
,
P.-Y.
, and
Le
,
S. N. T.
,
2016
, “
Organic Rankine Cycle for Waste Heat Recovery in a Refinery
,”
Ind. Eng. Chem. Res.
,
55
(
12
), pp.
3262
3275
.10.1021/acs.iecr.5b03381
10.
Pierobon
,
L.
,
Benato
,
A.
,
Scolari
,
E.
,
Haglind
,
F.
, and
Stoppato
,
A.
,
2014
, “
Waste Heat Recovery Technologies for Offshore Platforms
,”
Appl. Energy
,
136
, pp.
228
241
.10.1016/j.apenergy.2014.08.109
11.
BP
,
2018
, “
BP Annual Report: Growing the Business and Advancing the Energy Transition
,” Report No. 2018.
12.
Petronas
,
2017
, “
Petronas Annual Report 2017
,” Report No. 2017.
13.
Whitfield
,
A.
, and
Baines
,
N. C.
,
1990
,
Design of Radial Turbomachines
,
Wiley Inc
.,
New York
.
14.
Rahbar
,
K.
,
Mahmoud
,
S.
,
Al-Dadah
,
R. K.
, and
Moazami
,
N.
,
2015
, “
Parametric Analysis and Optimization of a Small-Scale Radial Turbine for Organic Rankine Cycle
,”
Energy
,
83
, pp.
696
711
.10.1016/j.energy.2015.02.079
15.
Meroni
,
A.
,
Robertson
,
M.
,
Martinez-Botas
,
R.
, and
Haglind
,
F.
,
2018
, “
A Methodology for the Preliminary Design and Performance Prediction of High-Pressure Ratio Radial-Inflow Turbines
,”
Energy
,
164
, pp.
1062
1078
.10.1016/j.energy.2018.09.045
16.
Clemente
,
S.
,
Micheli
,
D.
,
Reini
,
M.
, and
Taccani
,
R.
,
2013
, “
Bottoming Organic Rankine Cycle for a Small Scale Gas Turbine: A Comparison of Different Solutions
,”
Appl. Energy
,
106
, pp.
355
364
.10.1016/j.apenergy.2013.02.004
17.
Sauret
,
E.
, and
Rowlands
,
A. S.
,
2011
, “
Candidate Radial-Inflow Turbines and High-Density Working Fluids for Geothermal Power Systems
,”
Energy
,
36
(
7
), pp.
4460
4467
.10.1016/j.energy.2011.03.076
18.
Zheng
,
Y.
,
Hu
,
D.
,
Cao
,
Y.
, and
Dai
,
Y.
,
2017
, “
Preliminary Design and Off-Design Performance Analysis of an Organic Rankine Cycle Radial-Inflow Turbine Based on Mathematic Method and Cfd Method
,”
Appl. Therm. Eng.
,
112
, pp.
25
37
.10.1016/j.applthermaleng.2016.10.036
19.
Bell
,
I. H.
,
Quoilin
,
S.
,
Wronski
,
J.
, and
Lemort
,
V.
,
2013
, “
CoolProp: An Open-Source Reference-Quality Thermophysical Property Library
,”
ASME
Paper No. GT2021-59961.10.1115/GT2021-59961
20.
Mondejar
,
M. E.
,
McLinden
,
M. O.
, and
Lemmon
,
E. W.
,
2015
, “
Thermodynamic Properties of Trans-1-Chloro-3, 3, 3-Trifluoropropene (r1233zd (e)): Vapor Pressure,(p, ρ, t) Behavior, and Speed of Sound Measurements, and Equation of State
,”
J. Chem. Eng. Data
,
60
(
8
), pp.
2477
2489
.10.1021/acs.jced.5b00348
21.
Wasserbauer
,
C. A.
, and
Glassman
,
A. J.
,
1975
, “
FORTRAN Program for Predicting Off-Design Performance of Radial-Inflow Turbines
,” NASA Technical Note NASA TN D-8063(September 1975), National Aeronautics and Space Administration, Washington, DC, p.
55
.
22.
Spraker
,
W.
,
1987
, “
Contour Clearance Losses in Radial Inflow Turbines for Turbochargers
,”
ASME
Paper No. 90-GT-235.10.1115/90-GT-235
23.
Glassman
,
A. J.
,
1995
, “
Enhanced Analysis and Users Manual for Radial-Inflow Turbine Conceptual Design Code RTD
,” NASA Contractor Report No. 195454 (
Lewis Research Center
).
24.
CAESES
,
2022
, Computer Aided Engineering System Empowering Simulation by Friendship Systems, Germany, CAESES [textregistered] v.4.4.2., accessed Mar. 3, 2022, https://www.caeses.com/
25.
Herwig
,
H.
, and
Kock
,
F.
,
2006
, “
Direct and Indirect Methods of Calculating Entropy Generation Rates in Turbulent Convective Heat Transfer Problems
,”
Heat Mass Transfer
,
43
(
3
), pp.
207
215
.10.1007/s00231-006-0086-x
26.
Newton
,
P.
,
Copeland
,
C.
,
Martinez-Botas
,
R.
, and
Seiler
,
M.
,
2012
, “
An Audit of Aerodynamic Loss in a Double Entry Turbine Under Full and Partial Admission
,”
Int. J. Heat Fluid Flow
,
33
(
1
), pp.
70
80
.10.1016/j.ijheatfluidflow.2011.10.001
27.
Elliott
,
M.
,
Spence
,
S.
,
Seiler
,
M.
, and
Geron
,
M.
,
2020
, “
Performance Improvement of a Mixed Flow Turbine Using 3D Blading
,”
ASME
Paper No. GT2020-16272
.10.1115/GT2020-16272
28.
Kock
,
F.
, and
Herwig
,
H.
,
2004
, “
Local Entropy Production in Turbulent Shear Flows: A High-Reynolds Number Model With Wall Functions
,”
Int. J. Heat Mass Transfer
,
47
(
10–11
), pp.
2205
2215
.10.1016/j.ijheatmasstransfer.2003.11.025
29.
Newton
,
P.
,
Palenschat
,
T.
,
Martinez-Botas
,
R.
, and
Seiler
,
M.
,
2015
, “
Entropy Generation Rate in a Mixed Flow Turbine Passage
,”
International Gas Turbine Congress
, Tokyo, Japan, Nov. 11–15, pp.
15
20
.10.1007/s11630-019-1206-5
30.
Yang
,
B.
,
Newton
,
P.
, and
Martinez-Botas
,
R.
,
2020
, “
Understanding of Secondary Flows and Losses in Radial and Mixed Flow Turbines
,”
ASME J. Turbomach.
,
142
(
8
), p.
081006
.10.1115/1.4046487
You do not currently have access to this content.