Abstract

With the rapid development of unmanned aerial vehicles, the effect of the low Reynolds number on gas turbine performance and high-altitude endurance has received extensive attention. However, the existing three-dimensional component modeling cannot meet the design requirements of the whole engine level, and the accuracy and physical principles of the existing engine empirical correction cannot be guaranteed. Through the study of a single-shaft turbojet engine, this paper adopts a versatile and accurate coupling method, which combines the volume method and the full coupling method and conducts multifidelity simulation research on the zero-dimensional engine model and the three-dimensional component model. Then, based on the high-altitude test data, under typical operating conditions, compared with the existing empirical correction method in gasturb, the accuracy of the engine inlet flow, fuel flow, thrust, and exhaust gas temperature predicted by the volume-based fully coupled method is improved by 6.2%, 7.9%, 4.7%, and 11.4%, respectively. Next, as the flight altitude rises from 0 km to 21 km, the Reynolds number reduces, the working lines approach the surge lines, and the maximum mass flow rate and the efficiency of the engine components gradually decrease. In addition, in the flow field of the components, the thickness of the boundary layer increases, the shock wave intensity decreases, and the position moves forward. The core innovation of this article is that it provides a creative multifidelity evaluation method for gas turbines to effectively solve the problems of insufficient accuracy of the existing empirical correction methods and the inability of the component design to meet the gas turbine requirements in the study of the low Reynolds number effect at different altitudes, which significantly strengthens the connection among the component internal flow field information extraction, the component characteristics analysis, and the gas turbine performance matching. Moreover, it is conducive to the scientific design of the advanced unmanned aerial vehicles' power.

References

1.
Valavanis
,
K. P.
, and
Vachtsevanos
,
G. J.
,
2015
,
Handbook of Unmanned Aerial Vehicles
,
Springer
, Dordrecht, The
Netherlands
, pp.
2637
2860
.
2.
U.S. Department of Transportation
,
2013
, “
Unmanned Aircraft System (UAS) Service Demand 2015–2035: Literature Review & Projections of Future Usage
,” Technical Report, v.0.1, DOT-VNTSC-DoD-13-01, U.S. Department of Transportation, pp.
71
95
.
3.
Feng
,
L. H.
,
Shi
,
T. Y.
, and
Liu
,
Y. G.
,
2017
, “
Lift Enhancement of an Airfoil and an Unmanned Aerial Vehicle by Plasma Gurney Flaps
,”
AIAA J.
,
55
(
5
), pp.
1622
1632
.10.2514/1.J055426
4.
Teixeira
,
P. C.
, and
Cesnik
,
C.
,
2019
, “
Propeller Effects on the Response of High551 Altitude Long-Endurance Aircraft
,”
AIAA J.
,
57
(
10
), pp.
4328
4342
.10.2514/1.J057575
5.
Mankbadi
,
R. R.
,
Afari
,
S. O.
, and
Golubev
,
V. V.
,
2021
, “
High-Fidelity Simulations of Noise Generation in a Propeller-Driven Unmanned Aerial Vehicle
,”
AIAA J.
,
59
(
3
), pp.
1020
1039
.10.2514/1.J059117
6.
Amiri
,
H. B.
,
Farahani
,
A. S.
, and
Khazaei
,
H.
,
2016
, “
The Effect of Reynolds Number on Transonic Compressor Blade Rotor Section
,”
Heat Mass Transfer
,
52
(
10
), pp.
2155
2165
.10.1007/s00231-015-1715-z
7.
Liu
,
Q.
,
Ager
,
W.
,
Hall
,
C.
, and
Wheeler
,
A. P.
,
2022
, “
Low Reynolds Number Effects on the Separation and Wake of a Compressor Blade
,”
ASME J. Turbomach.
,
144
(
10
), p.
101008
.10.1115/1.4054148
8.
Schreiber
,
H.-A.
,
Steinert
,
W.
, and
Küsters
,
B.
,
2002
, “
Effects of Reynolds Number and Free-Stream Turbulence on Boundary Layer Transition in a Compressor Cascade
,”
ASME J. Turbomach.
,
124
(
1
), pp.
1
9
.10.1115/1.1413471
9.
Roberts
,
W. B.
,
1979
, “
Axial Compressor Blade Optimization in the Low Reynolds Number Regime
,”
AIAA J.
,
17
(
12
), pp.
1361
1367
.10.2514/3.61315
10.
Hadavandi
,
R.
,
Fontaneto
,
F.
, and
Desset
,
J.
,
2018
, “
Complete Characterization of a Highly Loaded Low Pressure Compressor at Different Reynolds Numbers for Computational Fluid Dynamics Simulations
,”
ASME J. Turbomach.
,
140
(
6
), p.
061008
.10.1115/1.4039727
11.
Gulich
,
J. F.
,
2003
, “
Effect of Reynolds Number and Surface Roughness on the Efficiency of Centrifugal Pumps
,”
ASME J. Fluids Eng.
,
125
(
4
), pp.
670
679
.10.1115/1.1593711
12.
Kuerner
,
M.
,
Reichstein
,
G. A.
,
Schrack
,
D.
,
Rose
,
M. G.
,
Staudacher
,
S.
,
Gier
,
J.
, and
Engel
,
K.
,
2011
, “
Low Pressure Turbine Secondary Vortices: Reynolds Lapse
,”
ASME Paper No. GT2011-45557
.
13.
Lipfert
,
M.
,
Marx
,
M.
,
Rose
,
M. G.
,
Staudacher
,
S.
,
Mahle
,
I.
,
Freygang
,
U.
, and
Brettschneider
,
M.
,
2014
, “
A Low Pressure Turbine at Extreme Off-Design Operation
,”
ASME J. Turbomach.
,
136
(
3
), p. 031018.10.1115/1.4025592
14.
Simoni
,
D.
,
Ubaldi
,
M.
,
Zunino
,
P.
, and
Ampellio
,
E.
,
2016
, “
Free-Stream Turbulence Effects on the Boundary Layer of a High-Lift Low-Pressure-Turbine Blade
,”
J. Therm. Sci.
,
25
(
3
), pp.
195
206
.10.1007/s11630-016-0851-1
15.
Wassell
,
A. B.
,
1968
, “
Reynolds Number Effects in Axial Compressors
,”
ASME J. Eng. Gas Turbines Power
,
90
(
2
), pp.
149
156
.10.1115/1.3609154
16.
Tu
,
Q. Y.
,
Chen
,
Y. C.
,
Su
,
S. M.
, and
Shang
,
X. S.
,
2005
, “
Effects of Reynolds Number on Control Schedule and Performance of HALE Engine
,”
J. Propul. Technol.
,
26
(
12
), pp.
125
128
.http://en.cnki.com.cn/Article_en/CJFDTOTAL-TJJS200502006.htm
17.
Prince
,
W. R.
, and
Wile
,
D. B.
,
1954
, “Altitude Performance of Compressor, Turbine, and Combustor Components of 600-B9 Turbojet Engine,” No. NACA RM E53I18.
18.
Kitamura
,
M.
,
Uchida
,
M.
, and
Yashima
,
S.
,
1987
, “
Altitude Tests of the XF3-30 Turbofan
,”
ASME
Paper No. 87-GT-25.10.1115/87-GT-25
19.
Tang
,
H. L.
,
Chen
,
M.
,
Jin
,
D. H.
, and
Zou
,
Z. P.
,
2013
, “
High Altitude Low Reynolds Number Effect on the Matching Performance of a Turbofan Engine
,”
Proc. Inst. Mech. Eng., Part G
,
227
(
3
), pp.
455
466
.10.1177/0954410012437505
20.
Kozu
,
M.
, and
Yashima
,
S.
,
1989
, “
Reynolds Number Effects on the Performance of a Turbofan Engine
,”
ASME
Paper No. 89-GT-199. 10.1115/89-GT-199
21.
Dong
,
P. C.
,
Tang
,
H. L.
,
Chen
,
M.
, and
Zou
,
Z. P.
,
2018
, “
Overall Performance Design of Paralleled Heat Release and Compression System for Hypersonic Aeroengine
,”
Appl. Energy
,
220
, pp.
36
46
.10.1016/j.apenergy.2018.03.062
22.
Wei
,
Z.
,
Jafari
,
S.
,
Zhang
,
S.
, and
Nikolaidis
,
T.
,
2021
, “
Hybrid Wiener Model: An On612 Board Approach Using Post-Flight Data for Gas Turbine Aero-Engines Modelling
,”
Appl. Therm. Eng.
,
184
, p.
116350
.10.1016/j.applthermaleng.2020.116350
23.
Chen
,
M.
,
Zhang
,
J. Y.
, and
Tang
,
H. L.
,
2018
, “
Interval Analysis of the Standard of Adaptive Cycle Engine Component Performance Deviation
,”
Aerosp. Sci. Technol.
,
81
, pp.
179
191
.10.1016/j.ast.2018.07.004
24.
Zheng
,
J.
,
Tang
,
H.
,
Chen
,
M.
, and
Yin
,
F.-J.
,
2018
, “
Equilibrium Running Principle Analysis on an Adaptive Cycle Engine
,”
Appl. Therm. Eng.
,
132
, pp.
393
409
.10.1016/j.applthermaleng.2017.12.102
25.
Lyu
,
Y.
,
Tang
,
H. L.
, and
Chen
,
M.
,
2016
, “
A Study on Combined Variable Geometries Regulation of Adaptive Cycle Engine During Throttling
,”
Appl. Sci.
,
6
(
12
), pp.
374
392
.10.3390/app6120374
26.
Zhang
,
J. Y.
,
Tang
,
H. L.
, and
Chen
,
M.
,
2019
, “
Linear Substitute Model-Based Uncertainty Analysis of Complicated Non-Linear Energy System Performance (Case Study of an Adaptive Cycle Engine)
,”
Appl. Energy
,
249
, pp.
87
108
.10.1016/j.apenergy.2019.04.138
27.
Camporeale
,
S. M.
,
Fortunato
,
B.
, and
Mastrovito
,
M.
,
2006
, “
A Modular Code for Real Time Dynamic Simulation of Gas Turbines in Simulink
,”
ASME J. Eng. Gas Turbines Power
,
128
(
3
), pp.
506
517
.10.1115/1.2132383
28.
Templalexis
,
I.
,
Alexiou
,
A.
,
Pachicis
,
V.
,
Roumeliotis
,
I.
, and
Aretakis
,
N.
,
2016
, “
Direct Coupling of a Two-Dimensional Fan Model in a Turbofan Engine Performance Simulation
,”
ASME
Paper No. GT2016-56617.10.1115/GT2016-56617
29.
Sanghi
,
V.
,
Lakshmanan
,
B. K.
, and
Rajasekaran
,
R.
,
2001
, “
Aerothermal Model for Real-Time Digital Simulation of a Mixed-Flow Turbofan Engine
,”
J. Propul. Power
,
17
(
3
), pp.
629
635
.10.2514/2.5789
30.
Kim
,
J. H.
,
Song
,
T. W.
,
Kim
,
T. S.
, and
Ro
,
S. T.
,
2001
, “
Model Development and Simulation of Transient Behaviour of Heavy Duty Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
123
(
3
), pp.
589
594
.10.1115/1.1370973
31.
Uzol
,
O.
,
2011
, “
A New High-Fidelity Transient Aero Thermal Model for Real-Time Simulations of the T700 Helicopter Turbo Shaft Engine
,”
J. Therm. Sci. Technol.
,
31
(
1
), pp.
37
44
.https://www.researchgate.net/publication/264898012_A_New_High-Fidelity_Transient_Aerothermal_Model_for_Real-Time_Simulations_of_the_T700_Helicopter_Turboshaft_Engine
32.
Joachim
,
K.
,
2000
,
Gasturb 13: Design and Off-Design Performance of Gas Turbines
,
GasTurb GmbH
, Aachen,
Germany
, pp.
143
145
.
You do not currently have access to this content.