Abstract

The detrimental effects generated by the gas turbine fouling phenomenon are well known. Due to soil and soot particles ingestion, gas turbines experience performance drops related to greater fuel consumption and even lower efficiency. These effects are related to the modification of the shape and surface roughness of relevant surfaces (compressor and turbine blades and vanes, especially) due to the presence of a thin layer generated by micro/nanosized particle adhesion. Such contaminants are swallowed by the unit and, as a function of the operating conditions, adhere to the surface, causing a sort of dangerous coating to the surface. In this work, a microtomography analysis of the deposited layer is reported. The deposited layer has been generated using microsized soil and soot powders under specific impact conditions and substrate surface roughness similar to those in the cold section of a gas turbine compressor. The microtomography analysis has been carried out using the beamline at the ELETTRA Sincrotrone research center. Thanks to the resolution of the beamline, the detection of the three-dimensional internal structure of the soil and soot layers have revealed that within the layer, the structure is characterized by discontinuities. Soot and soil particles, even characterized by similar diameter distributions and test conditions, generate layer structures that differ by the magnitude, orientation, location of the internal discontinuities, and surface morphology (i.e., roughness). The comprehension of the packing process allows us to understand the adhesion process and define general guidelines to predict the fouling phenomenon.

References

1.
Suman
,
A.
,
Morini
,
M.
,
Aldi
,
N.
,
Casari
,
N.
,
Pinelli
,
M.
, and
Spina
,
P. R.
,
2017
, “
A Compressor Fouling Review Based on an Historical Survey of Asme Turbo Expo Papers
,”
ASME J. Turbomach.
,
139
(
4
), p.
041005
.10.1115/1.4035070
2.
Suman
,
A.
,
Casari
,
N.
,
Fabbri
,
E.
,
Pinelli
,
M.
,
di Mare
,
L.
, and
Montomoli
,
F.
,
2019
, “
Gas Turbine Fouling Tests: Review, Critical Analysis and Impact Behavior Map
,”
ASME J. Eng. Gas Turbines Power
,
141
(
3
), p.
032601
.10.1115/1.4041282
3.
Suman
,
A.
,
Casari
,
N.
,
Fabbri
,
E.
,
di Mare
,
L.
,
Montomoli
,
F.
, and
Pinelli
,
M.
,
2019
, “
Generalization of Particle Impact Behavior in Gas Turbine Via Non-Dimensional Grouping
,”
Prog. Energy Combust. Sci.
,
74
, pp.
103
151
.10.1016/j.pecs.2019.05.001
4.
Diakunchak
,
I. S.
,
1992
, “
Performance Deterioration in Industrial Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
114
(
2
), pp.
161
168
.10.1115/1.2906565
5.
Hill
,
R. C.
,
Hubbell
,
R. H.
, and
Krapp
,
M. L.
,
1960
, “
Operation and Maintenance of Remotely Controlled Gas-Turbine Units
,”
ASME
Paper No. 60-GTP-14.10.1115/60-GTP-14
6.
Bultzo
,
C.
,
1980
, “
Some Unique Gas Turbine Problems
,”
ASME
Paper No. 80-GT-179.10.1115/80-GT-179
7.
Perullo
,
C. A.
,
Lieuwen
,
T.
,
Barron
,
J.
,
Grace
,
D.
, and
Angello
,
L.
,
2015
, “
Evaluation of Air Filtration Options for an Industrial Gas Turbine
,”
ASME
Paper No. GT2015-43736.10.1115/GT2015-43736
8.
Schroth
,
T.
, and
Cagna
,
M.
,
2008
, “
Economical Benefits of Highly Efficient Three-Stage Intake Air Filtration for Gas Turbines
,”
ASME
Paper No. GT2008-50280.10.1115/GT2008-50280
9.
Kurz
,
R.
, and
Brun
,
K.
,
2012
, “
Fouling Mechanisms in Axial Compressors
,”
ASME J. Eng. Gas Turbines Power
,
134
(
3
), p.
032401
.10.1115/1.4004403
10.
Schneider
,
E.
,
Bussjaeger
,
S. D.
,
Franco
,
S.
, and
Therkorn
,
D.
,
2010
, “
Analysis of Compressor on-Line Washing to Optimize Gas Turbine Power Plant Performance
,”
ASME J. Eng. Gas Turbines Power
,
132
(
6
), p.
062001
.10.1115/1.4000133
11.
Mund
,
F. C.
, and
Pilidis
,
P.
,
2004
, “
A Review of Gas Turbine Online Washing Systems
,”
ASME
Paper No. GT2004-53224.10.1115/GT2004-53224
12.
Asplund
,
P.
,
1997
, “
Gas Turbine Cleaning Upgrade (Compressor Wash)
,”
ASME
Paper No. 97-AA-135.10.1115/97-AA-135
13.
Ellis
,
M.
,
Bojdo
,
N.
,
Filippone
,
A.
, and
Clarkson
,
R.
,
2021
, “
Monte Carlo Predictions of Aero-Engine Performance Degradation Due to Particle Ingestion
,”
Aerospace
,
8
(
6
), p.
146
.10.3390/aerospace8060146
14.
Syverud
,
E.
,
Brekke
,
O.
, and
Bakken
,
L. E.
,
2007
, “
Axial Compressor Deterioration Caused by Saltwater Ingestion
,”
ASME J. Turbomach.
,
129
(
1
), pp.
119
126
.10.1115/1.2219763
15.
Casari
,
N.
,
Pinelli
,
M.
,
Spina
,
P. R.
,
Suman
,
A.
, and
Vulpio
,
A.
,
2021
, “
Performance Degradation Due to Fouling and Recovery After Washing in a Multistage Test Compressor
,”
ASME J. Eng. Gas Turbines Power
,
143
(
3
), p.
031020
.10.1115/1.4049765
16.
Vulpio
,
A.
,
Suman
,
A.
,
Casari
,
N.
,
Pinelli
,
M.
,
Appleby
,
C.
, and
Kyte
,
S.
,
2021
, “
Washing Effectiveness Assessment of Different Cleaners on a Small-Scale Multistage Compressor
,”
ASME
Paper No. GT2021-59455.10.1115/GT2021-59455
17.
Visser
,
J.
,
1995
, “
Particle Adhesion and Removal: A Review
,”
Particulate Sci. Technol.
,
13
(
3–4
), pp.
169
196
.10.1080/02726359508906677
18.
Konstandopoulos
,
A. G.
,
2006
, “
Particle Sticking/Rebound Criteria at Oblique Impact
,”
J. Aerosol Sci.
,
37
(
3
), pp.
292
305
.10.1016/j.jaerosci.2005.05.019
19.
Abd-Elhady
,
M. S.
,
Rindt
,
C. C. M.
,
Wijers
,
J. G.
, and
van Steenhoven
,
A. A.
,
2006
, “
Modelling the Impaction of a Micron Particle With a Powdery Layer
,”
Powder Technol.
,
168
(
3
), pp.
111
124
.10.1016/j.powtec.2006.06.013
20.
Soltani
,
M.
, and
Ahmadi
,
G.
,
1994
, “
On Particle Adhesion and Removal Mechanisms in Turbulent Flows
,”
J. Adhes. Sci. Technol.
,
8
(
7
), pp.
763
785
.10.1163/156856194X00799
21.
Suman
,
A.
,
Vulpio
,
A.
,
Casari
,
N.
,
Pinelli
,
M.
,
di Lillo
,
F.
, and
D'Amico
,
L.
,
2021
, “
Analysis of Soil and Soot Deposits by X-Ray Computed Microtomography
,”
Powder Technol.
,
394
, pp.
608
621
.10.1016/j.powtec.2021.08.072
22.
IUPAC Compendium of Chemical Terminology
,
2006
,
Online Corrected Version
, 2nd ed., Blackwell Scientific Publications, Oxford, UK.10.1351/goldbook
23.
Bons
,
J. P.
,
Taylor
,
R. P.
,
McClain
,
S. T.
, and
Rivir
,
R. B.
,
2001
, “
The Many Faces of Turbine Surface Roughness
,”
ASME J. Turbomach.
,
123
(
4
), pp.
739
748
.10.1115/1.1400115
24.
Suman
,
A.
,
Vulpio
,
A.
,
Fortini
,
A.
,
Fabbri
,
E.
,
Casari
,
N.
,
Merlin
,
M.
, and
Pinelli
,
M.
,
2021
, “
Experimental Analysis of Micro-Sized Particles Time-Wise Adhesion: The Influence of Impact Velocity and Surface Roughness
,”
Int. J. Heat Mass Transfer
,
165
, p.
120632
.10.1016/j.ijheatmasstransfer.2020.120632
25.
Casari
,
N.
,
Fortini
,
A.
,
Pinelli
,
M.
,
Suman
,
A.
,
Vulpio
,
A.
, and
Zanini
,
N.
,
2022
, “
Measurement Approaches for the Analysis of Soil Layer by Microparticle Adhesion (2022) Measurement
,”
J. Int. Meas. Confederation
,
187
, p.
110185
.10.1016/j.measurement.2021.110185
26.
Suman
,
A.
,
Vulpio
,
A.
,
Casari
,
N.
, and
Pinelli
,
M.
,
2021
, “
Outstretching Population Growth Theory Towards Surface Contamination
,”
Powder Technol.
,
394
, pp.
597
607
.10.1016/j.powtec.2021.08.071
27.
Suman
,
A.
,
Vulpio
,
A.
,
Casari
,
N.
, and
Pinelli
,
M.
,
2022
, “
A Stochastic Model for Nanoparticle Deposits Growth
,”
ASME J. Eng. Gas Turbines Power
,
144
(
1
), p.
011022
.10.1115/1.4051988
28.
Aldi
,
N.
,
Casari
,
N.
,
Dainese
,
D.
,
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Suman
,
A.
,
2017
, “
The Effects of Third Substances at the Particle/Surface Interface in Compressor Fouling
,”
ASME
Paper No. GT2017-64425.10.1115/GT2017-64425
29.
Aldi
,
N.
,
Casari
,
N.
,
Dainese
,
D.
,
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Suman
,
A.
,
2018
, “
Fouling on a Multistage Axial Compressor in the Presence of a Third Substance at the Particle/Surface Interface
,”
ASME
Paper No. GT2018-76923.10.1115/GT2018-76923
30.
Suman
,
A.
,
Kurz
,
R.
,
Aldi
,
N.
,
Morini
,
M.
,
Brun
,
K.
,
Pinelli
,
M.
, and
Spina
,
P. R.
,
2015
, “
Quantitative Computational Fluid Dynamics Analyses of Particle Deposition on a Transonic Axial Compressor Blade-Part I: Particle Zones Impact
,”
ASME J. Turbomach.
,
137
(
2
), p.
021009
.10.1115/1.4028295
31.
Suman
,
A.
,
Morini
,
M.
,
Kurz
,
R.
,
Aldi
,
N.
,
Brun
,
K.
,
Pinelli
,
M.
, and
Spina
,
P. R.
,
2015
, “
Quantitative Computational Fluid Dynamic Analyses of Particle Deposition on a Transonic Axial Compressor Blade-Part ii: Impact Kinematics and Particle Sticking Analysis
,”
ASME J. Turbomach.
,
137
(
2
), p.
021010
.10.1115/1.4028296
32.
Suman
,
A.
,
Kurz
,
R.
,
Aldi
,
N.
,
Morini
,
M.
,
Brun
,
K.
,
Pinelli
,
M.
, and
Ruggero Spina
,
P.
,
2016
, “
Quantitative Computational Fluid Dynamics Analyses of Particle Deposition on a Subsonic Axial Compressor Blade
,”
ASME J. Eng. Gas Turbines Power
,
138
(
1
), p.
012603
.10.1115/1.4031205
33.
Aldi
,
N.
,
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Suman
,
A.
,
2017
, “
An Innovative Method for Evaluating Particle Deposition Accounting for Rotor/Stator Interaction
,”
ASME J. Eng. Gas Turbines Power
,
139
(
5
), p.
4034968
.10.1115/1.4034968
34.
Aldi
,
N.
,
Casari
,
N.
,
Dainese
,
D.
,
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Suman
,
A.
,
2018
, “
Quantitative Computational Fluid Dynamics Analyses of Particle Deposition in a Heavy-Duty Subsonic Axial Compressor
,”
ASME J. Eng. Gas Turbines Power
,
140
(
8
), p.
082601
.10.1115/1.4038608
35.
Northam
,
M.
,
Rossmann
,
L.
,
Sarley
,
B.
,
Harder
,
B.
,
Park
,
J.-S.
,
Kenesei
,
P.
,
Almer
,
J.
,
Viswanathan
,
V.
, and
Raghavan
,
S.
,
2019
, “
Comparison of Electron-Beam Physical Vapor Deposition and Plasma-Spray Physical Vapor Deposition Thermal Barrier Coating Properties Using Synchrotron X-Ray Diffraction
,”
ASME
Paper No. GT2019-90828.10.1115/GT2019-90828
36.
Sondej
,
F.
,
Bück
,
A.
,
Koslowsky
,
K.
,
Bachmann
,
P.
,
Jacob
,
M.
, and
Tsotsas
,
E.
,
2015
, “
Investigation of Coating Layer Morphology by Micro-Computed X-Ray Tomography
,”
Powder Technol.
,
273
, pp.
165
175
.10.1016/j.powtec.2014.12.050
37.
Perfetti
,
G.
,
Van De Casteele
,
E.
,
Rieger
,
B.
,
Wildeboer
,
W. J.
, and
Meesters
,
G. M. H.
,
2010
, “
X-Ray Microtomography and Image Analysis as Complementary Methods for Morphological Characterization and Coating Thickness Measurement of Coated Particles
,”
Adv. Powder Technol.
,
21
(
6
), pp.
663
675
.10.1016/j.apt.2010.08.002
38.
Zandomeneghi
,
D.
,
Voltolini
,
M.
,
Mancini
,
L.
,
Brun
,
F.
,
Dreossi
,
D.
, and
Polacci
,
M.
,
2010
, “
Quantitative Analysis of X-Ray Microtomography Images of Geomaterials: Application to Volcanic Rocks
,”
Geosphere
,
6
(
6
), pp.
793
804
.10.1130/GES00561.1
39.
Peth
,
S.
,
2010
, “
Applications of Microtomography in Soils and Sediments
,”
Dev. Soil Sci.
,
34
, pp.
73
101
.10.1016/S0166-2481(10)34003-7
40.
Hamamoto
,
S.
,
Moldrup
,
P.
,
Kawamoto
,
K.
,
Sakaki
,
T.
,
Nishimura
,
T.
, and
Komatsu
,
T.
,
2016
, “
Pore Network Structure Linked by X-Ray CT to Particle Characteristics and Transport Parameters
,”
Soils Found.
,
56
(
4
), pp.
676
690
.10.1016/j.sandf.2016.07.008
41.
Yamamoto
,
K.
,
Satake
,
S.
,
Yamashita
,
H.
,
Takada
,
N.
, and
Misawa
,
M.
,
2009
, “
Fluid Simulation and X-Ray CT Images for Soot Deposition in a Diesel Filter
,”
Eur. Phys. J.: Spec. Top.
,
171
(
1
), pp.
205
212
.10.1140/epjst/e2009-01030-x
42.
Paganin
,
D.
,
Mayo
,
S. C.
,
Gureyev
,
T. E.
,
Miller
,
P. R.
, and
Wilkins
,
S. W.
,
2002
, “
Simultaneous Phase and Amplitude Extraction From a Single Defocused Image of a Homogeneous Object
,”
J. Microsc.
,
206
(
1
), pp.
33
40
.10.1046/j.1365-2818.2002.01010.x
43.
Brun
,
F.
,
Pacilè
,
S.
,
Accardo
,
A.
,
Kourousias
,
G.
,
Dreossi
,
D.
,
Mancini
,
L.
,
Tromba
,
G.
, and
Pugliese
,
R.
,
2015
, “
Pugliese, R. Enhanced and Flexible Software Tools for X-Ray Computed Tomography at the Italian Synchrotron Radiation Facility Elettra
,”
Fundam. Inform.
,
141
(
2–3
), pp.
233
243
.10.3233/FI-2015-1273
44.
Schneider
,
C. A.
,
Rasband
,
W. S.
, and
Eliceiri
,
K. W.
,
2012
, “
NIH Image to ImageJ: 25 Years of Image Analysis
,”
Nat. Methods
,
9
(
7
), pp.
671
675
.10.1038/nmeth.2089
45.
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Venturini
,
M.
,
2010
, “
Computational Fluid Dynamics Simulation of Fouling on Axial Compressor Stages
,”
ASME J. Eng. Gas Turbines Power
,
132
(
7
), p.
072401
.10.1115/1.4000128
46.
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Venturini
,
M.
,
2011
, “
Numerical Analysis of the Effects of Nonuniform Surface Roughness on Compressor Stage Performance
,”
ASME J. Eng. Gas Turbines Power
,
133
(
7
), p.
072402
.10.1115/1.4002350
47.
Aldi
,
N.
,
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
,
Suman
,
A.
, and
Venturini
,
M.
,
2014
, “
Performance Evaluation of Nonuniformly fouled axial compressor Stages by Means of Computational Fluid Dynamics Analyses
,”
ASME J. Turbomach.
,
136
(
2
), p.
021016
.10.1115/1.4025227
48.
Suman
,
A.
,
Vulpio
,
A.
,
Casari
,
N.
,
Pinelli
,
M.
,
Kurz
,
R.
, and
Brun
,
K.
,
2021
, “
Deposition Pattern Analysis on a Fouled Multistage Test Compressor
,”
ASME J. Eng. Gas Turbines Power
,
143
(
8
), p.
081006
.10.1115/1.4049510
49.
Vulpio
,
A.
,
Suman
,
A.
,
Casari
,
N.
,
Pinelli
,
M.
,
Kurz
,
R.
, and
Brun
,
K.
,
2021
, “
Analysis of Timewise Compressor Fouling Phenomenon on a Multistage Test Compressor: Performance Losses and Particle Adhesion
,”
ASME J. Eng. Gas Turbines Power
,
143
(
8
), p.
081005
.10.1115/1.4049505
50.
Suman
,
A.
,
Morini
,
M.
,
Kurz
,
R.
,
Aldi
,
N.
,
Brun
,
K.
,
Pinelli
,
M.
, and
Ruggero Spina
,
P.
,
2016
, “
Estimation of the Particle Deposition on a Transonic Axial Compressor Blade
,”
ASME J. Eng. Gas Turbines Power
,
138
(
1
), p.
012604
.10.1115/1.4031206
51.
Suman
,
A.
,
Morini
,
M.
,
Kurz
,
R.
,
Aldi
,
N.
,
Brun
,
K.
,
Pinelli
,
M.
, and
Spina
,
P. R.
,
2017
, “
Estimation of the Particle Deposition on a Subsonic Axial Compressor Blade
,”
ASME J. Eng. Gas Turbines Power
,
139
(
1
), p.
012604
.10.1115/1.4034209
52.
He
,
B.
,
Ding
,
S.
, and
Shi
,
Z.
,
2021
, “
A Comparison Between Profile and Areal Surface Roughness Parameters
,”
Metrol. Meas. Syst.
,
28
(
3
), pp.
413
438
.10.24425/mms.2021.137133
53.
Leach
,
R.
,
2013
,
Characterisation of Areal Surface Texture
,
National Physical Laboratory - Springer-Verlag Berlin Heidelberg
,
New York Dordrecht London
.
54.
Goodhand
,
M. N.
,
Walton
,
K.
,
Blunt
,
L.
,
Lung
,
H. W.
,
Miller
,
R. J.
, and
Marsden
,
R.
,
2016
, “
The Limitations of Using “ra” to Describe Surface Roughness
,”
ASME J. Turbomach.
,
138
(
10
), p.
101003
.10.1115/1.4032280
55.
Poppe
,
T.
,
Blum
,
J.
, and
Henning
,
T.
,
2000
, “
Analogous Experiments on the Stickiness of Micron-Sized Preplanetary Dust
,”
Astrophysical J.
,
533
(
1
), pp.
454
471
.10.1086/308626
56.
Bons
,
J. P.
,
Prenter
,
R.
, and
Whitaker
,
S.
,
2017
, “
A Simple Physics-Based Model for Particle Rebound and Deposition in Turbomachinery
,”
ASME J. Turbomach.
,
139
(
8
), p.
081009
.10.1115/1.4035921
57.
Vulpio
,
A.
,
Suman
,
A.
,
Casari
,
N.
, and
Pinelli
,
M.
,
2021
, “
Dust Ingestion in a Rotorcraft Engine Compressor: Experimental and Numerical Study of the Fouling Rate
,”
Aerospace
,
8
(
3
), p.
81
.10.3390/aerospace8030081
58.
Suder
,
K. L.
,
Chima
,
R. V.
,
Strazisar
,
A. J.
, and
Roberts
,
W. B.
,
1995
, “
The Effect of Adding Roughness and Thickness to a Transonic Axial Compressor Rotor
,”
ASME J. Turbomach.
,
117
(
4
), pp.
491
505
.10.1115/1.2836561
59.
Gbadebo
,
S. A.
,
Hynes
,
T. P.
, and
Cumpsty
,
N. A.
,
2004
, “
Influence of Surface Roughness on Three-Dimensional Separation in Axial Compressors
,”
ASME J. Turbomach.
,
126
(
4
), pp.
455
463
.10.1115/1.1791281
60.
Friso
,
R.
,
Zanini
,
N.
,
Suman
,
A.
,
Casari
,
N.
, and
Pinelli
,
M.
,
2022
, “
A Microscale-Based Methodology to Predict the Performance Degradation in Turbomachinery Due to Particle Deposition
,”
ASME
Paper No. GT2022-82425.10.1115/GT2022-82425
61.
Brun
,
K.
,
Grimley
,
T. A.
,
Foiles
,
W. C.
, and
Kurz
,
R.
,
2015
, “
Experimental Evaluation of the Effectiveness of Online Water-Washing in Gas Turbine Compressors
,”
ASME J. Eng. Gas Turbines Power
,
137
(
4
), p.
042605
.10.1115/1.4028618
You do not currently have access to this content.