Abstract

The study of autoignition propensity in premixers for gas turbines is critical for their safe operation and design. Although premixers can be analyzed using reacting computational fluid dynamics (CFD) coupled with detailed autoignition chemical kinetics, it is essential to also develop methods with lower computational cost to be able to explore more geometries and operating conditions during the design process. This paper presents such an approach based on incompletely stirred reactor network (ISRN) modeling. This method uses a CFD solution of a nonreacting flow and subsequently estimates the spatial evolution of reacting scalars such as autoignition precursors and temperature conditioned on the mixture fraction, which is used to quantify autoignition propensity. The approach is intended as a “postprocessing” step, enabling the use of very complex chemical mechanisms and the study of many operating conditions. For a representative premixer of an aeroderivative gas turbine, results show that autoignition propensity can be reproduced with ISRN at highly reactive operating conditions featuring multi-stage autoignition of a dual fuel mixture. The ISRN computations are consequently analyzed to explore the evolution of reacting scalars and propose some autoignition metrics that combine mixing and chemical reaction to assist the design of premixers.

References

1.
Jella
,
S.
,
Bourque
,
G.
,
Gauthier
,
P.
,
Versailles
,
P.
,
Bergthorson
,
J.
,
Park
,
J.-W.
,
Lu
,
T.
,
Panigrahy
,
S.
, and
Curran
,
H.
,
2021
, “
Analysis of Auto-Ignition Chemistry in Aeroderivative Premixers at Engine Conditions
,”
ASME J. Eng. Gas Turbines Power
,
143
(
11
), p.
111024
.10.1115/1.4051460
2.
Scarinci
,
T.
,
Freeman
,
C.
, and
Day
,
I.
,
2004
, “
Passive Control of Combustion Instability in a Low Emissions Aeroderivative Gas Turbine
,”
ASME
Paper No. GT2004-53767.10.1115/GT2004-53767
3.
Mastorakos
,
E.
,
2009
, “
Ignition of Turbulent Non-Premixed Flames
,”
Prog. Energy Combust. Sci.
,
35
(
1
), pp.
57
97
.10.1016/j.pecs.2008.07.002
4.
Stanković
,
I.
,
Triantafyllidis
,
A.
,
Mastorakos
,
E.
,
Lacor
,
C.
, and
Merci
,
B.
,
2011
, “
Simulation of Hydrogen Auto-Ignition in a Turbulent co-Flow of Heated Air With LES and CMC Approach
,”
Flow, Turbul. Combust.
,
86
(
3–4
), pp.
689
710
.10.1007/s10494-010-9277-0
5.
Ju
,
Y.
,
Reuter
,
C. B.
,
Yehia
,
O. R.
,
Farouk
,
T. I.
, and
Won
,
S. H.
,
2019
, “
Dynamics of Cool Flames
,”
Prog. Energy Combust. Sci.
,
75
, p.
100787
.10.1016/j.pecs.2019.100787
6.
Iavarone
,
S.
,
Gkantonas
,
S.
,
Jella
,
S.
,
Versailles
,
P.
,
Yousefian
,
S.
,
Mastorakos
,
E.
, and
Bourque
,
G.
,
2022
, “
Quantification of Autoignition Risk in Aeroderivative Gas Turbine Premixers Using Incompletely Stirred Reactor and Surrogate Modelling
,”
ASME
Paper No. GT2022-82931.10.17863/CAM.86823
7.
Kaluri
,
A.
,
Malte
,
P.
, and
Novosselov
,
I.
,
2018
, “
Real-Time Prediction of Lean Blowout Using Chemical Reactor Network
,”
Fuel
,
234
, pp.
797
808
.10.1016/j.fuel.2018.07.065
8.
Yousefian
,
S.
,
Bourque
,
G.
, and
Monaghan
,
R. F. D.
,
2017
, “
Review of Hybrid Emissions Prediction Tools and Uncertainty Quantification Methods for Gas Turbine Combustion Systems
,”
ASME
Paper No. GT2017-64271.10.1115/GT2017-64271
9.
Khodayari
,
H.
,
Ommi
,
F.
, and
Saboohi
,
Z.
,
2020
, “
A Review on the Applications of the Chemical Reactor Network Approach on the Prediction of Pollutant Emissions
,”
Aircr. Eng. Aerosp. Technol.
,
92
(
4
), pp.
551
570
.10.1108/AEAT-08-2019-0178
10.
Gkantonas
,
S.
,
Foale
,
J. M.
,
Giusti
,
A.
, and
Mastorakos
,
E.
,
2020
, “
Soot Emission Simulations of a Single Sector Model Combustor Using Incompletely Stirred Reactor Network Modeling
,”
ASME J. Eng. Gas Turbines Power
,
142
(
10
), p.
101007
.10.1115/1.4048408
11.
Gkantonas
,
S.
,
2021
, “
Predicting Soot Emissions with Advanced Turbulent Reacting Flow Modelling
,” Ph.D. thesis,
University of Cambridge
, Cambridge, UK.
12.
Smith
,
N. S. A.
,
1994
, “
Development of the conditional moment closure method for modelling turbulent combustion
,” Ph.D. thesis,
University of Sydney
, Sydney, Australia.
13.
Mobini
,
K.
,
1998
, “
An investigation of the imperfectly stirred reactor modelling of recirculating combustion flows
,” Ph.D. thesis,
University of Sydney
, Sydney, Australia.
14.
Mobini
,
K.
, and
Bilger
,
R.
,
2004
, “
Imperfectly Stirred Reactor Model Predictions of Reaction in a Burner With Strong Recirculation
,”
Combust. Sci. Technol.
,
176
(
1
), pp.
45
70
.10.1080/00102200490255334
15.
Mobini
,
K.
, and
Bilger
,
R.
,
2009
, “
Parametric Study of the Incompletely Stirred Reactor Modeling
,”
Combust. Flame
,
156
(
9
), pp.
1818
1827
.10.1016/j.combustflame.2009.06.017
16.
Klimenko
,
A.
, and
Bilger
,
R.
,
1999
, “
Conditional Moment Closure for Turbulent Combustion
,”
Prog. Energy Combust. Sci.
,
25
(
6
), pp.
595
687
.10.1016/S0360-1285(99)00006-4
17.
Gough
,
A.
,
Mobini
,
K.
,
Chen
,
Y.-C.
, and
Bilger
,
R.
,
1998
, “
Measurements and Predictions in a Confined Bluff-Body Burner Modeled as an Imperfectly Stirred Reactor
,”
Symp. (Int.) Combust.
,
27
(
2
), pp.
3181
3188
.10.1016/S0082-0784(98)80181-1
18.
Trivedi
,
S.
,
Gkantonas
,
S.
,
Wright
,
Y. M.
,
Parravicini
,
M.
,
Barro
,
C.
, and
Mastorakos
,
E.
,
2021
, “
Conditional Moment Closure Approaches for Simulating Soot and NOx in a Heavy-Duty Diesel Engine
,”
SAE
Paper No. 2021-24-0041.10.4271/2021-24-0041
19.
Gkantonas
,
S.
,
Giusti
,
A.
, and
Mastorakos
,
E.
,
2019
, “
Incompletely Stirred Reactor Network Modelling for Soot Emissions Prediction in Aero-Engine Combustors
,”
Proceedings of the International Workshop on Clean Combustion: Principles and Applications
, Darmstadt, Germany, Sept. 25–26.10.17863/CAM.44973
20.
Gkantonas
,
S.
,
Giusti
,
A.
, and
Mastorakos
,
E.
,
2020
, “
Incompletely Stirred Reactor Network Modeling of a Model Gas Turbine Combustor
,”
AIAA
Paper No. 2020-2087.10.2514/6.2020-2087
21.
Iavarone
,
S.
,
Gkantonas
,
S.
, and
Mastorakos
,
E.
,
2022
, “
Incompletely Stirred Reactor Network Modeling for the Estimation of Turbulent Non-Premixed Autoignition
,”
International Colloquium on the Dynamics of Explosions and Reactive Systems (ICDERS)
, Naples, Italy, June 19–24, Paper No. 51.
22.
Iavarone
,
S.
,
Gkantonas
,
S.
, and
Mastorakos
,
E.
,
2022
, “
Stochastic Low-Order Modelling of Hydrogen Autoignition in a Turbulent Non-Premixed Flow
,”
Proc. Combust. Inst.
, epub.
10.17863/CAM.86632
23.
Markides
,
C.
, and
Mastorakos
,
E.
,
2005
, “
An Experimental Study of Hydrogen Autoignition in a Turbulent co-Flow of Heated Air
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
883
891
.10.1016/j.proci.2004.08.024
24.
Markides
,
C. N.
,
2005
, “
Autoignition in Turbulent Flows
,” Ph.D. thesis,
University of Cambridge
, Cambridge, UK.
25.
Sreedhara
,
S.
,
Lee
,
Y.
,
Huh
,
K. Y.
, and
Ahn
,
D.
,
2008
, “
Comparison of Submodels for Conditional Velocity and Scalar Dissipation in CMC Simulation of Piloted Jet and Bluff-Body Flames
,”
Combust. Flame
,
152
(
1–2
), pp.
282
286
.10.1016/j.combustflame.2007.08.008
26.
O'Brien
,
E. E.
, and
Jiang
,
T.-L.
,
1991
, “
The Conditional Dissipation Rate of an Initially Binary Scalar in Homogeneous Turbulence
,”
Phys. Fluids A: Fluid Dyn.
,
3
(
12
), pp.
3121
3123
.10.1063/1.858127
27.
Mortensen
,
M.
,
2005
, “
Consistent Modeling of Scalar Mixing for Presumed, Multiple Parameter Probability Density Functions
,”
Phys. Fluids
,
17
(
1
), p.
018106
.10.1063/1.1829311
28.
Devaud
,
C. B.
,
Bilger
,
R. W.
, and
Liu
,
T.
,
2004
, “
A New Method of Modeling the Conditional Scalar Dissipation Rate
,”
Phys. Fluids
,
16
(
6
), pp.
2004
2011
.10.1063/1.1699108
29.
Wright
,
Y.
,
Depaola
,
G.
,
Boulouchos
,
K.
, and
Mastorakos
,
E.
,
2005
, “
Simulations of Spray Autoignition and Flame Establishment With Two-Dimensional CMC
,”
Combust. Flame
,
143
(
4
), pp.
402
419
.10.1016/j.combustflame.2005.08.022
30.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow, Turbulence Combust.
,
62
(
3
), pp.
183
200
.10.1023/A:1009995426001
31.
Jiménez
,
C.
,
Ducros
,
F.
,
Cuenot
,
B.
, and
Bédat
,
B.
,
2001
, “
Subgrid Scale Variance and Dissipation of a Scalar Field in Large Eddy Simulations
,”
Phys. Fluids
,
13
(
6
), pp.
1748
1754
.10.1063/1.1366668
32.
Branley
,
N.
, and
Jones
,
W.
,
2001
, “
Large Eddy Simulation of a Turbulent Non-Premixed Flame
,”
Combust. Flame
,
127
(
1–2
), pp.
1914
1934
.10.1016/S0010-2180(01)00298-X
33.
Garmory
,
A.
, and
Mastorakos
,
E.
,
2011
, “
Capturing Localised Extinction in Sandia Flame f With LES–CMC
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
1673
1680
.10.1016/j.proci.2010.06.065
34.
Sitte
,
M. P.
,
Turquand d'Auzay
,
C.
,
Giusti
,
A.
,
Mastorakos
,
E.
, and
Chakraborty
,
N.
,
2021
, “
A-Priori Validation of Scalar Dissipation Rate Models for Turbulent Non-Premixed Flames
,”
Flow, Turbul. Combust.
,
107
(
1
), pp.
201
218
.10.1007/s10494-020-00218-x
35.
Iavarone
,
S.
,
Gkantonas
,
S.
,
Giusti
,
A.
, and
Mastorakos
,
E.
,
2021
, “
Data-Driven Incompletely Stirred Reactor Network Modeling of an Aero-Engine Model Combustor
,”
Proceedings of the 13th International ERCOFTAC Symposium
, Rhodes, Greece, Sept. 15–17.10.17863/CAM.77083
36.
Liu
,
S.
,
Hewson
,
J. C.
,
Chen
,
J. H.
, and
Pitsch
,
H.
,
2004
, “
Effects of Strain Rate on High-Pressure Nonpremixed n-Heptane Autoignition in Counterflow
,”
Combust. Flame
,
137
(
3
), pp.
320
339
.10.1016/j.combustflame.2004.01.011
37.
Krisman
,
A.
,
Hawkes
,
E. R.
,
Talei
,
M.
,
Bhagatwala
,
A.
, and
Chen
,
J. H.
,
2017
, “
A Direct Numerical Simulation of Cool-Flame Affected Autoignition in Diesel Engine-Relevant Conditions
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3567
3575
.10.1016/j.proci.2016.08.043
38.
Minamoto
,
Y.
, and
Chen
,
J. H.
,
2016
, “
DNS of a Turbulent Lifted DME Jet Flame
,”
Combust. Flame
,
169
, pp.
38
50
.10.1016/j.combustflame.2016.04.007
39.
Zhang
,
H.
,
Hawkes
,
E. R.
,
Chen
,
J. H.
, and
Kook
,
S.
,
2013
, “
A Numerical Study of the Autoignition of Dimethyl Ether With Temperature Inhomogeneities
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
803
812
.10.1016/j.proci.2012.07.026
40.
Krisman
,
A.
,
Hawkes
,
E. R.
,
Talei
,
M.
,
Bhagatwala
,
A.
, and
Chen
,
J. H.
,
2016
, “
Characterisation of Two-Stage Ignition in Diesel Engine-Relevant Thermochemical Conditions Using Direct Numerical Simulation
,”
Combust. Flame
,
172
, pp.
326
341
.10.1016/j.combustflame.2016.06.010
41.
Jin
,
T.
,
Luo
,
K. H.
,
Wang
,
X.
,
Luo
,
K.
, and
Fan
,
J.
,
2019
, “
Dynamics of Triple-Flames in Ignition of Turbulent Dual Fuel Mixture: A Direct Numerical Simulation Study
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
4625
4633
.10.1016/j.proci.2018.09.018
42.
De Paola
,
G.
,
Kim
,
I. S.
, and
Mastorakos
,
E.
,
2009
, “
Second-Order Conditional Moment Closure Simulations of Autoignition of an n-Heptane Plume in a Turbulent Coflow of Heated Air
,”
Flow, Turbul. Combust.
,
82
(
4
), pp.
455
475
.10.1007/s10494-008-9183-x
43.
Oshibe
,
H.
,
Nakamura
,
H.
,
Tezuka
,
T.
,
Hasegawa
,
S.
, and
Maruta
,
K.
,
2010
, “
Stabilized Three-Stage Oxidation of DME/Air Mixture in a Micro Flow Reactor With a Controlled Temperature Profile
,”
Combust. Flame
,
157
(
8
), pp.
1572
1580
.10.1016/j.combustflame.2010.03.004
44.
Yamamoto
,
A.
,
Oshibe
,
H.
,
Nakamura
,
H.
,
Tezuka
,
T.
,
Hasegawa
,
S.
, and
Maruta
,
K.
,
2011
, “
Stabilized Three-Stage Oxidation of Gaseous n-Heptane/Air Mixture in a Micro Flow Reactor With a Controlled Temperature Profile
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
3259
3266
.10.1016/j.proci.2010.05.004
45.
El-Asrag
,
H. A.
, and
Ju
,
Y.
,
2013
, “
Direct Numerical Simulations of Exhaust Gas Recirculation Effect on Multistage Autoignition in the Negative Temperature Combustion Regime for Stratified HCCI Flow Conditions by Using H2O2 Addition
,”
Combust. Theory Modell.
,
17
(
2
), pp.
316
334
.10.1080/13647830.2013.764020
46.
Sarathy
,
S. M.
,
Tingas
,
E.-A.
,
Nasir
,
E. F.
,
Detogni
,
A.
,
Wang
,
Z.
,
Farooq
,
A.
, and
Im
,
H.
,
2019
, “
Three-Stage Heat Release in n-Heptane Auto-Ignition
,”
Proc. Combust. Inst.
,
37
(
1
), pp.
485
492
.10.1016/j.proci.2018.07.075
47.
Westbrook
,
C. K.
,
2000
, “
Chemical Kinetics of Hydrocarbon Ignition in Practical Combustion Systems
,”
Proc. Combust. Inst.
,
28
(
2
), pp.
1563
1577
.10.1016/S0082-0784(00)80554-8
48.
Tingas
,
E. A.
,
Kyritsis
,
D. C.
, and
Goussis
,
D. A.
,
2015
, “
Autoignition Dynamics of DME/Air and EtOH/Air Homogeneous Mixtures
,”
Combust. Flame
,
162
(
9
), pp.
3263
3276
.10.1016/j.combustflame.2015.05.016
49.
Yousefian
,
S.
,
Bourque
,
G.
, and
Monaghan
,
R. F. D.
,
2019
, “
Uncertainty Quantification of NOx and CO Emissions in a Swirl-Stabilized Burner
,”
ASME J. Eng. Gas Turbines Power
,
141
(
10
), p.
101014
.10.1115/1.4044204
You do not currently have access to this content.