Abstract

Variable cycle turbofan-ramjet (VCTR) engine is a promising propulsion system candidate for future Mach 4+ vehicles. Compared with conventional turbine engines, the VCTR engine has a higher thrust-to-weight ratio, a smaller diameter and a more compact structure. A component-based simulation model is developed to explore the operating characteristics of a high-speed VCTR concept. Modeling methods of variable-geometry components are characterized in this paper, and then, the way to build the VCTR model solver is described. The VCTR engine simulation model is validated by the numerical and experimental results of double bypass (DB) variable cycle engines from NASA technical reports. Performance and control law of the VCTR engine along the flight trajectory with flight Mach number varying from 0.5 to 4.0 are obtained to maximize net thrust and compared with that of a conventional two-spool afterburning mixed-flow turbofan (MFTF). Results show that the VCTR's performance is highly dependent on the fan characteristics and limited by various operating constraints, such as fan surge margin, turbine inlet temperature, and compressor discharge temperature. In addition, the thrust level of the MFTF with the variable-area low-pressure turbine is close to the VCTR engine.

References

1.
Messersmith
,
N.
, and
Castro
,
J. H.
,
2010
, “
Future High Mach Propulsion
,”
AIAA
Paper No. 2003-2613.10.2514/6.2003-2613
2.
Blevins
,
G.
,
Hartsel
,
J.
, and
Powell
,
T.
,
1987
, “
Variable Cycle Concepts for High Mach Applications
,”
AIAA
Paper No. 87-2103.10.2514/6.1987-2103
3.
Bartolotta
,
P. A.
,
McNelis
,
N. B.
, and
Shafer
,
D. G.
,
2003
, “
High Speed Turbines: Development of a Turbine Accelerator (RTA) for Space Access
,”
AIAA Paper No. 2003-6943.
4.
McNelis
,
N.
, and
Bartolotta
,
P.
,
2005
, “
Revolutionary Turbine Accelerator (RTA) Demonstrator
,”
AIAA
Paper No. 2005-3250.10.2514/6.2005-3250
5.
Brazier
,
M. E.
, and
Paulson
,
R. E.
,
1993
, “
Variable Cycle Engine Concepts
,” ISABE Paper No.
93
7065
.
6.
Suder
,
K. L.
,
Prahst
,
P. S.
, and
Thorp
,
S. A.
,
2010
, “
Results of an Advanced Fan Stage Operating Over a Wide Range of Speed & Bypass Ratio - Part 1: Fan Stage Design and Experimental Results
,”
ASME
Paper No. GT2010-22825.10.1115/GT2010-22825
7.
Lee
,
J.
, and
Buehrle
,
R. J.
,
2005
, “The GE-NASA RTA Hyperburner Design and Development,” National Aeronautics and Space Administration, Washington, DC, Report No. TM-2005-213803.
8.
Sippel
,
M.
,
2006
, “
Research on TBCC Propulsion for a Mach 4.5 Supersonic Cruise Airliner
,”
Paper
No. 2006-7976.10.2514/6.2006-7976
9.
Jones
,
S. M.
,
2010
, “
Steady-State Modeling of Gas Turbine Engines Using the Numerical Propulsion System Simulation Code
,”
ASME
Paper No. GT2010-22350.10.1115/GT2010-22350
10.
Arendsen
,
P.
,
Mathioudakis
,
K.
,
Kogenhop
,
O.
,
Baalbergen
,
E. H.
, and
Alexiou
,
A.
, “
Advanced Capabilities for Gas Turbine Engine Performance Simulations
,”
ASME
Paper No. GT2007-27086.10.1115/GT2007-27086
11.
Kurzke
,
J.
, and
Halliwell
,
I.
,
2018
,
Propulsion and Power: An Exploration of Gas Turbine Performance Modeling
,
Springer International Publishing
,
New York
.
12.
Tai
,
J.
,
Roth
,
B.
, and
Mavris
,
D.
,
2005
, “Development of an NPSS Variable Cycle Engine Model,” ISABE Paper No.
2005
1295
.
13.
Denney
,
R. K.
,
Tai
,
J. C.
,
Kestner
,
B. K.
, and
Mavris
,
D. N.
,
2005
, “
Variable Cycle Optimization for Supersonic Commercial Applications
,”
SAE
Paper No. 2005-01-3400.10.4271/2005-01-3400
14.
Vyvey
,
P.
,
Bosschaerts
,
W.
,
Villace
,
V. F.
, and
Paniagua
,
G.
,
2011
, “
Study of an Airbreathing Variable Cycle Engine
,”
AIAA
Paper No. 2011-5758.10.2514/6.2011-5758
15.
Ulizar
,
I.
, and
Pilidis
,
P.
,
1997
, “
Predicted Performance Characteristics of a Variable Cycle Turbofan
,”
Aeronaut. J.
,
101
(
1006
), pp.
263
268
.https://www.cambridge.org/core/journals/aeronautical-journal/article/abs/predicted-performance-characteristics-of-a-variable-cycle-turbofan/F8D83A90EEE4F72CF07BD5CCA9108B58
16.
Wood
,
A.
, and
Pilidis
,
P.
,
1997
, “
A Variable Cycle Jet Engine for ASTOVL Aircraft
,”
Aircr. Eng. Aerosp. Technol.
,
69
(
6
), pp.
534
539
.10.1108/00022669710186002
17.
Gronstedt
,
T.
,
2000
, “
Development of Methods for Analysis and Optimization of Complex Jet Engine Systems
,” Ph.D. thesis,
Chalmers University of Technology
,
Gothenburg, Switzerland
.
18.
Kurzke
,
J.
,
1999
, “
Gas Turbine Cycle Design Methodology: A Comparison of Parameter Variation With Numerical Optimization
,”
J. Eng. Gas Turbines Power
,
121
(
1
), pp.
6
11
.10.1115/1.2816315
19.
Grönstedt
,
U. T. J.
, and
Pilidis
,
P.
,
2002
, “
Control Optimization of the Transient Performance of the Selective Bleed Variable Cycle Engine During Mode Transition
,”
J. Eng. Gas Turbines Power
,
124
(
1
), pp.
75
81
.10.1115/1.1394965
20.
Rallabhandi
,
S. K.
, and
Mavris
,
D. N.
,
2008
, “
Simultaneous Airframe and Propulsion Cycle Optimization for Supersonic Aircraft Design
,”
J. Aircr.
,
45
(
1
), pp.
38
55
.10.2514/1.33183
21.
Kobayashi
,
H.
, and
Suzuki
,
H.
,
2008
, “
Optimal Design of Hypersonic Turbojet Engines for Two-Stage-to-Orbit Spaceplane
,”
J. Spacecr. Rockets
,
45
(
4
), pp.
741
749
.10.2514/1.31987
22.
Rodríguez-Miranda
,
I.
,
Fernández-Villacé
,
V.
, and
Paniagua
,
G.
,
2013
, “
Modeling, Analysis, and Optimization of the Air-Turborocket Expander Engine
,”
J. Propul. Power
,
29
(
6
), pp.
1266
1273
.10.2514/1.B34781
23.
Johnson
,
J. E.
,
1998
, “Turbofan Engine with a Core Driven Supercharged Bypass Duct and Fixed Geometry Nozzle,” General Electric Company, Cincinnati, OH, U.S. Patent No. 5806303.
24.
Busbey
,
B. C.
,
Crall
,
D. W.
, and
Toye
,
M. D.
,
1997
, “Blade Assembly with Splitter Shroud,” General Electric Company, Cincinnati, OH, U.S. Patent No. 5988980.
25.
Johnson
,
J. E.
, and
Powell
,
B. F.
,
2011
, “Adaptive Engine,” General Electric Company, Cincinnati, OH, U.S. Patent No. 20110167792.
26.
Zhang
,
M. Y.
,
Wang
,
Z. X.
,
Liu
,
Z. W.
, and
Zhang
,
X. B.
,
2016
, “
Analysis of Mode Transition Performance for a Tandem TBCC Engine
,”
AIAA
Paper No. 2016-4573.10.2514/6.2016-4573
27.
Zhang
,
M. Y.
,
Zhou
,
L.
,
Wang
,
Z. X.
, and
Zhang
,
X. B.
,
2018
, “
Simulation and Analysis of Mode Transition Performance for an Over-Under TBCC Engine
,”
J. Propul. Technol.
,
39
(
11
), pp.
2429
2437
.http://a.xueshu.baidu.com/usercenter/paper/show?paperid=1y4x0pt0ju340as08g2d0vf00w652762
28.
Zhang
,
M. Y.
,
Wang
,
Z. X.
,
Zhang
,
X. B.
, and
Zhou
,
L.
,
2018
, “
Simulation of Windmilling-Ram Mode for Tandem TBCC Engine
,”
J. Aerosp. Power
,
33
(
12
), pp.
2939
2949
.
29.
Gordon
,
S.
, and
McBride
,
B. J.
,
1994
, “Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications,” National Aeronautics and Space Administration, Washington, DC, Report No. RP-1311.
30.
Gauntner
,
J. W.
,
1980
, “Algorithm for Calculating Turbine Cooling Clow and the Resulting Decrease in Turbine Efficiency,” National Aeronautics and Space Administration, Washington, DC, Report No. TM-81453.
31.
Zachos
,
P. K.
,
Aslanidou
,
I.
,
Pachidis
,
V.
, and
Singh
,
R.
,
2011
, “
A Sub-Idle Compressor Characteristics Generation Method With Enhanced Physical Background
,”
ASME J. Eng. Gas Turbines Power
,
133
(
8
), p.
081702
.10.1115/1.4002820
32.
Sullivan
,
T. J.
, and
Parker
,
D. E.
,
1979
, “Design Study and Performance Analysis of a High-Speed Multistage Variable-Geometry Fan for a Variable Cycle Engine,” National Aeronautics and Space Administration, Washington, DC, Report No. CR-159545.
33.
Schum
,
H. J.
,
Moffitt
,
T. P.
, and
Behning
,
F. P.
,
1968
, “Effect of Variable Stator Area on Performance of a Single-Stage Turbine Suitable for Air Cooling 4: Turbine Performance with 70-Percent Design Stator Area,” National Aeronautics and Space Administration, Washington, DC, Report No. TM-X-1697.
34.
MacLallin
,
K. L.
,
Kofskey
,
M. G.
, and
Wong
,
R. Y.
,
1982
, “Cold-Air Performance of a 15.41-cm-Tip-Diameter Axial-Flow Power Turbine with Variable-Area Stator Designed for a 75-kW Automotive Gas Turbine Engine,” National Aeronautics and Space Administration, Washington, DC, Report No. TM-82644.
35.
Behning
,
F. P.
,
Schum
,
H. J.
, and
Szanca
,
E. M.
,
1974
, “Cold-Air Investigation of a Turbine for High-Temperature-Engine Application 5: Two-Stage Turbine Performance as Affected by Variable Stator Area,” National Aeronautics and Space Administration, Washington, DC, Report No. TN-D-7571.
36.
Vdoviak
,
J. W.
,
Knott
,
P. R.
, and
Ebacker
,
J. J.
,
1981
, “Aerodynamic/Acoustic Performance of YJ101/Double Bypass VCE with Coannular Plug Nozzle,” National Aeronautics and Space Administration, Washington, DC, Report No. CR-159869.
37.
Zhang
,
X. B.
, and
Wang
,
Z. X.
,
2017
, “
Optimization of FLADE Variable Cycle Engine Performance Based on Improved Differential Evolution Algorithm
,”
ASME
Paper No. GTINDIA2017-4771.10.1115/GTINDIA2017-4771
38.
Schweiger
,
F. A.
,
1987
, “Revolutionary Opportunities for Materials and Structures Study,” National Aeronautics and Space Administration, Washington, DC, Report No. CR-179642.
39.
Morris
,
S. J.
,
Geiselhart
,
K. A.
, and
Coen
,
P. G.
,
1989
, “Performance Potential of an Advanced Technology Mach 3 Turbojet Engine Installed on a Conceptual High-Speed Civil Transport,” National Aeronautics and Space Administration, Washington, DC, Report No. TM-4144.
40.
Snyder
,
C. A.
, and
Espinosa
,
A. M.
,
2013
, “Lessons Learned during TBCC Design for the NASA-AFRL Joint System Study,” National Aeronautics and Space Administration, Washington, DC, Report No. TM-2013-218100.
You do not currently have access to this content.