Abstract

Natural events and human activities are responsible for the generation and transport of large amounts of microsized particles, which could contaminate several engineering devices like solar panels, wind turbines, and aero-engines. In industrial processes, systems as heat exchangers, fans, and dust collectors are continuously affected by nanoparticles' interaction. For several applications, the adhesion of such nanoparticles is detrimental, generating safety and performance issues. Particle-to-particle and particle-to-surface interactions are well known, even if a general explanation of nanoparticle deposit growth is still unknown. In this paper, an interpretation of deposit growth due to nanoparticle deposition can predict particle adhesion, and layer accretion is proposed. A statistical model and a set of coefficients are used to generalize nanoparticle deposits' growth by an S-shaped function. In particular, the nanoparticle deposits grow analogously to a typical autonomous population settlement in a virgin area following statistical rule, which includes the initial growth, the successive stable condition (development), and catastrophic events able to destroy the layer. This approach generalizes nanoparticle adhesion/deposition behavior, overpassing the constraints reported in common deposition models, mainly focused on the mechanical aspect of the nanoparticle impact event. The catastrophic events, such as layer detachment, are modeled with a Poisson's distribution, related to material characteristics and impact conditions. This innovative approach, analogies, and coefficients applied to common engineering applications may be the starting point for improving the prediction capability of nanoparticle deposition.

References

1.
Costabile
,
F.
,
Birmili
,
W.
,
Klose
,
S.
,
Tuch
,
T.
,
Wehner
,
B.
,
Wiedensohler
,
A.
,
Franck
,
U.
,
Konig
,
K.
, and
Sonntag
,
A.
,
2009
, “
Spatio-Temporal Variability and Principal Components of the Particle Number Size Distribution in an Urban Atmosphere
,”
Atmos. Chem. Phys.
,
9
(
9
), pp.
3163
3195
.10.5194/acp-9-3163-2009
2.
Zender
,
C. S.
,
Bian
,
H.
, and
Newman
,
D.
,
2003
, “
Mineral Dust Entrainment and Deposition (DEAD) Model: Description and 1990s Dust Climatology
,”
J. Geophys. Res. Atmos.
,
108
(
D14
), pp.
AAC 8-1
AAC 8-19
.10.1029/2002JD002775
3.
Corn
,
M.
, and
Stein
,
F.
,
1966
, “
Adhesion of Atmospheric Dustfall Particles to a Glass Slide
,”
Nat.
,
211
(
5044
), pp.
60
61
.10.1038/211060b0
4.
Maghami
,
M. R.
,
Hizam
,
H.
,
Gomes
,
C.
,
Radzi
,
M. A.
,
Rezadad
,
M. I.
, and
Hajighorbani
,
S.
,
2016
, “
Power Loss Due to Soiling on Solar Panel: A Review
,”
Renewable Sustainable Energy Rev.
,
59
, pp.
1307
1316
.10.1016/j.rser.2016.01.044
5.
Suman
,
A.
,
Morini
,
M.
,
Aldi
,
N.
,
Casari
,
N.
,
Pinelli
,
M.
, and
Spina
,
P. R.
,
2017
, “
A Compressor Fouling Review Based on an Historical Survey of Asme Turbo Expo Papers
,”
ASME J. Turbomach.
,
139
(
4
), p.
041005
.10.1115/1.4035070
6.
Suman
,
A.
,
Casari
,
N.
,
Fabbri
,
E.
,
di Mare
,
L.
,
Montomoli
,
F.
, and
Pinelli
,
M.
,
2019
, “
Generalization of Particle Impact Behavior in Gas Turbine Via Non-Dimensional Grouping
,”
Prog. Energy Combust. Sci.
,
74
, pp.
103
151
.10.1016/j.pecs.2019.05.001
7.
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Venturini
,
M.
,
2010
, “
Computational Fluid Dynamics Simulation of Fouling on Axial Compressor Stages
,”
ASME J. Eng. Gas Turbines Power
,
132
(
7
), p.
072401
.10.1115/1.4000128
8.
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Venturini
,
M.
,
2011
, “
Numerical Analysis of the Effects of Nonuniform Surface Roughness on Compressor Stage Performance
,”
ASME J. Eng. Gas Turbines Power
,
133
(
7
), p.
072402
.10.1115/1.4002350
9.
Aldi
,
N.
,
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
,
Suman
,
A.
, and
Venturini
,
M.
,
2014
, “
Performance Evaluation of Nonuniformly Fouled Axial Compressor Stages by Means of Computational Fluid Dynamics Analyses
,”
ASME J. Turbomach.
,
136
(
2
), p.
021016
.10.1115/1.4025227
10.
Suder
,
K. L.
,
Chima
,
R. V.
,
Strazisar
,
A. J.
, and
Roberts
,
W. B.
,
1995
, “
The Effect of Adding Roughness and Thickness to a Transonic Axial Compressor Rotor
,”
ASME J. Turbomach.
,
117
(
4
), pp.
491
505
.10.1115/1.2836561
11.
Gbadebo
,
S. A.
,
Hynes
,
T. P.
, and
Cumpsty
,
N. A.
,
2004
, “
Influence of Surface Roughness on Three-Dimensional Separation in Axial Compressors
,”
ASME J. Turbomach.
,
126
(
4
), pp.
455
463
.10.1115/1.1791281
12.
Vulpio
,
A.
,
Suman
,
A.
,
Casari
,
N.
,
Pinelli
,
M.
,
Kurz
,
R.
, and
Brun
,
K.
,
2021
, “
Analysis of Time-Wise Compressor Fouling Phenomenon on a Multistage Test Compressor: Performance Losses and Particle Adhesion
,”
ASME J. Eng. Gas Turbines Power
,
143
(
8
), p.
081005
.10.1115/1.4049505
13.
Suman
,
A.
,
Vulpio
,
A.
,
Casari
,
N.
,
Pinelli
,
M.
,
Kurz
,
R.
, and
Brun
,
K.
,
2021
, “
Deposition Pattern Analysis on a Fouled Multistage Test Compressor
,”
ASME J. Eng. Gas Turbines Power
,
143
(
8
), p.
081006
.10.1115/1.4049510
14.
Mund
,
F. C.
, and
Pilidis
,
P.
,
2006
, “
Gas Turbine Compressor Washing: Historical Developments, Trends and Main Design Parameters for Online Systems
,”
ASME J. Eng. Gas Turbines Power
,
128
(
2
), pp.
344
353
.10.1115/1.2132378
15.
Syverud
,
E.
, and
Bakken
,
L. E.
,
2007
, “
Online Water Wash Tests of GE J85-13
,”
ASME J. Turbomach.
,
129
(
1
), pp.
136
142
.10.1115/1.2372768
16.
Casari
,
N.
,
Pinelli
,
M.
,
Spina
,
P. R.
,
Suman
,
A.
, and
Vulpio
,
A.
,
2021
, “
Performance Degradation Due to Fouling and Recovery After Washing in a Multistage Test Compressor
,”
ASME J. Eng. Gas Turbines Power
,
143
(
3
), p.
031020
.10.1115/1.4049765
17.
Kern
,
D. Q.
, and
Seaton
,
R. A.
,
1959
, “
A Theoretical Analysis of Thermal Surface Fouling
,”
British Chem. Eng.
,
4
(
5
), pp.
258
262
.https://www.bibsonomy.org/bibtex/2031e9c6c6bd3c310cf58e3fd4270e6be/thorade
18.
Bohnet
,
M.
,
1987
, “
Fouling of Heat Transfer Surfaces
,”
Chem. Eng. Technol.
,
10
(
1
), pp.
113
125
.10.1002/ceat.270100115
19.
Walsh
,
P. M.
,
Sayre
,
A. N.
,
Loehden
,
D. O.
,
Monroe
,
L. S.
,
Beér
,
J. M.
, and
Sarofim
,
A. F.
,
1990
, “
Deposition of Bituminous Coal Ash on an Isolated Heat Exchanger Tube: Effects of Coal Properties on Deposit Growth
,”
Prog. Energy Combust. Sci.
,
16
(
4
), pp.
327
345
.10.1016/0360-1285(90)90042-2
20.
Taborek
,
J.
,
1972
, “
Fouling: The Major Unsolved Problem in Heat Transfer
,”
Chem. Eng. Prog.
,
68
, pp.
59
67
.
21.
Kleinhans
,
U.
,
Wieland
,
C.
,
Frandsen
,
F. J.
, and
Spliethoff
,
H.
,
2018
, “
Ash Formation and Deposition in Coal and Biomass Fired Combustion Systems: Progress and Challenges in the Field of Ash Particle Sticking and Rebound Behavior
,”
Prog. Energy Combust. Sci.
,
68
, pp.
65
168
.10.1016/j.pecs.2018.02.001
22.
Young
,
J.
, and
Leeming
,
A.
,
1997
, “
A Theory of Particle Deposition in Turbulent Pipe Flow
,”
J. Fluid Mech.
,
340
, pp.
129
159
.10.1017/S0022112097005284
23.
Palomba
,
E.
,
Poppe
,
T.
,
Colangeli
,
L.
,
Palumbo
,
P.
,
Perrin
,
J. M.
,
Bussoletti
,
E.
, and
Henning
,
T.
,
2001
, “
The Sticking Efficiency of Quartz Crystals for Cosmic Sub-Micron Grain Collection
,”
Planet. Space Sci.
,
49
(
9
), pp.
919
926
.10.1016/S0032-0633(01)00015-0
24.
Hertz
,
H.
,
1882
,
Miscellaneous Papers
,
Macmillan
,
London
, UK, pp.
146
183
(Authorised English Translation).
25.
Visser
,
J.
,
1995
, “
Particle Adhesion and Removal: A Review
,”
Part. Sci. Technol.
,
13
(
3–4
), pp.
169
196
.10.1080/02726359508906677
26.
Suman
,
A.
,
Vulpio
,
A.
,
Fortini
,
A.
,
Fabbri
,
E.
,
Casari
,
N.
,
Merlin
,
M.
, and
Pinelli
,
M.
,
2021
, “
Experimental Analysis of Micro-Sized Particles Time-Wise Adhesion: The Influence of Impact Velocity and Surface Roughness
,”
Int. J. Heat Mass Transfer
,
165
, p.
120632
.10.1016/j.ijheatmasstransfer.2020.120632
27.
Malthus
,
T.
,
1798
, “
An Essay on the Principle of Population, as it Affects the Future Improvement of Society with Remarks on the Speculations of Mr. Godwin, M. Condorcet and Other,” Printed for J. Johnson in St. Paul's Church-Yard, London 1798 - English Edition by Lawbook Exchange Ltd., 1st Edition 2008.
28.
Verhulst
,
P.-F.
,
1838
, “
Notice Sur la Loi Que la Population Poursuit Dans Son Accroissement
,”
Corresp. Math. Phys.
,
10
, pp.
113
121
.https://www.scienceopen.com/document?vid=b51b58ae-889e-49ac-bc75-759cffcdc238
29.
McKendrick
,
A. G.
, and
Kesava Pai
,
M.
,
1912
, “
XLV—The Rate of Multiplication of Micro-Organisms: A Mathematical Study
,”
Proc. R. Soc. Edinburgh
,
31
, pp.
649
653
.10.1017/S0370164600025426
30.
Lotka
,
A. J.
,
1920
, “
Analytical Note on Certain Rhythmic Relations in Organic Systems
,”
Proc. Natl. Acad. Sci. U. S. A.
,
6
(
7
), pp.
410
415
.10.1073/pnas.6.7.410
31.
Hanson
,
F. B.
, and
Tuckwell
,
H. C.
,
1981
, “
Logistic Growth With Random Density Independent Disasters
,”
Theor. Popul. Biol.
,
19
(
1
), pp.
1
18
.10.1016/0040-5809(81)90032-0
32.
Raup
,
D. M.
, and
Sepkoski
,
J. J.
Jr.
,
1982
, “
Mass Extinctions in the Marine Fossil Record
,”
Science
,
215
(
4539
), pp.
1501
1503
.10.1126/science.215.4539.1501
33.
ISO,
2016
, “
Road Vehicles–Test Contaminants for Filter Evaluation—Part 1: Arizona Test Dust
,” ISO, Geneva, Switzerland, Report No. 12103-1:2016.
34.
Kuhl
,
M. E.
,
Ivy
,
J. S.
,
Lada
,
E. K.
,
Steiger
,
N. M.
,
Wagner
,
M. A.
, and
Wilson
,
J. R.
,
2010
, “
Univariate Input Models for Stochastic Simulation
,”
J. Simul.
,
4
(
2
), pp.
81
97
.10.1057/jos.2009.31
35.
Bojdo
,
N.
,
Filippone
,
A.
,
Parkes
,
B.
, and
Clarkson
,
R.
,
2020
, “
Aircraft Engine Dust Ingestion Following Sand Storms
,”
Aerosp. Sci. Technol.
,
106
, p.
106072
.10.1016/j.ast.2020.106072
36.
Abd-Elhady
,
M. S.
,
Rindt
,
C. C. M.
,
Wijers
,
J. G.
, and
van Steenhoven
,
A. A.
,
2006
, “
Modelling the Impaction of a Micron Particle With a Powdery Layer
,”
Powder Technol.
,
168
(
3
), pp.
111
124
.10.1016/j.powtec.2006.06.013
37.
Hanson
,
F. B.
, and
Tuckwell
,
H. C.
,
1997
, “
Population Growth With Randomly Distributed Jumps
,”
J. Math. Biol.
,
36
(
2
), pp.
169
187
.10.1007/s002850050096
38.
Kermack
,
W. O.
, and
McKendrick
,
A. G.
,
1927
, “
A Contribution to the Mathematical Theory of Epidemics
,”
Proc. R. Soc. London A
,
115
, pp.
700
721
.10.1098/rspa.1927.0118
39.
Cleaver
,
J. W.
, and
Yates
,
B.
,
1973
, “
Mechanism of Detachment of Colloidal Particles From a Flat Substrate in a Turbulent Flow
,”
J. Colloid Interface Sci.
,
44
(
3
), pp.
464
474
.10.1016/0021-9797(73)90323-8
40.
Soltani
,
M.
, and
Ahmadi
,
G.
,
1994
, “
On Particle Adhesion and Removal Mechanisms in Turbulent Flows
,”
J. Adhes. Sci. Technol.
,
8
(
7
), pp.
763
785
.10.1163/156856194X00799
41.
Casari
,
N.
,
Pinelli
,
M.
,
Suman
,
A.
,
di Mare
,
L.
, and
Montomoli
,
F.
,
2018
, “
EBFOG: Deposition, Erosion, and Detachment on High-Pressure Turbine Vanes
,”
ASME J. Turbomach.
,
140
(
6
), p.
061001
.10.1115/1.4039181
You do not currently have access to this content.