There are currently numerous efforts to create renewable fuels that have similar properties to conventional diesel fuels. One major future challenge is evaluating how these new fuels will function in older legacy diesel engines. It is desired to have physically based modeling tools that will predict new fuel performance without extensive full scale engine testing. This study evaluates two modeling tools that are used together to predict ignition delay in a military diesel engine running n-hexadecane as a fuel across the engine's speed-load range. AVL-FIRE® is used to predict the physical delay of the fuel from the start of injection until the formation of a combustible mixture. Then a detailed Lawrence Livermore National Laboratory (LLNL) chemical kinetic mechanism is used to predict the chemical ignition delay. This total model predicted ignition delay is then compared to the experimental engine data. The combined model predicted results show good agreement to that of the experimental data across the engine operating range with the chemical delay being a larger fraction of the total ignition delay. This study shows that predictive tools have the potential to evaluate new fuel combustion performance.

References

1.
Hamilton
,
L. J.
,
Williams
,
S. A.
,
Kamin
,
R. A.
,
Carr
,
M. A.
,
Caton
,
P. A.
, and
Cowart
,
J. S.
,
2011
, “
Renewable Fuel Performance in a Legacy Military Diesel Engine
,”
ASME 2011 Energy Sustainability Conference
, Washington, DC, August 7–10,
ASME
Paper No. ES2011-54101.10.1115/ES2011-54101
2.
Caton
,
P. A.
,
Williams
,
S. A.
,
Kamin
,
R. A.
,
Luning-Prak
,
D.
,
Hamilton
,
L. J.
, and
Cowart
,
J. S.
,
2012
, “
Hydrotreated Algae Renewable Fuel Performance in a Military Diesel Engine
,”
ASME 2012 Internal Combustion Engine Division Spring Technical Conference
, Torino, Italy, May 6–9,
ASME
Paper No. ICES2012-81048.10.1115/ICES2012-81048
3.
Caton
,
P. A.
,
Hamilton
,
L. J.
, and
Cowart
,
J. S.
,
2010
, “
Understanding Ignition Delay Effects With Pure Component Fuels in a Single Cylinder Diesel Engine
,”
ASME J. Eng. Gas Turbines Power
,
133
(
3
), p.
032803
.10.1115/1.4001943
4.
Mathes
,
A.
,
Reis
,
J.
,
Caton
,
P. A.
,
Cowart
,
J. S.
,
Luning-Prak
,
D.
,
Hamilton
,
L. J.
,
2010
, “
Binary Mixtures of Branched and Aromatic Pure Component Fuels as Surrogates for Future Diesel Fuels
,”
SAE Int. J. Fuels Lubr.
,
3
(
2
), pp.
794
809
.10.4271/2010-01-2188
5.
Cowart
,
J. S.
,
Hamilton
,
L. J.
,
Williams
,
S.
, and
McDaniel
,
A.
,
2013
, “
Alternative Diesel Fuel Combustion Acceptance Criteria for New Fuels in Legacy Diesel Engines
,”
SAE
Technical Paper No. 2013-01-1135.10.4271/2013-01-1135
6.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
New York
.
7.
Hardenberg
,
H. O.
, and
Hase
,
F. W.
,
1979
, “
An Empirical Formula for Computing the Pressure Rise in Diesel Engine
,”
SAE
Technical Paper No. 790493.10.4271/790493
8.
Gatowski
,
J. A.
,
Balles
,
E. N.
,
Chun
,
K. M.
,
Nelson
,
F. E.
,
Ekchian
,
J. A.
, and
Heywood
,
J. B.
,
1984
, “
Heat Release Analysis of Engine Pressure Data
,”
SAE
Technical Paper No. 841359.10.4271/841359
9.
Chun
,
K. M.
, and
Heywood
,
J. B.
,
1987
, “
Estimating Heat Release and Mass of Mixture Burned From SI Engine Pressure Data
,”
Combust. Sci. Technol.
,
54
(1–6), pp.
133
143
.10.1080/00102208708947049
10.
Rothamer
,
D. A.
, and
Murphy
,
L.
,
2013
, “
Systematic Study of Ignition Delay for Jet Fuels and Diesel Fuel in HD Diesel Engine
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
3021
3029
.10.1016/j.proci.2012.06.085
11.
Cowart
,
J. S.
,
Fischer
,
W. P.
,
Hamilton
,
L. J.
,
Caton
,
P. A.
,
Sarathy
,
S. M.
, and
Pitz
,
W. J.
,
2013
, “
An Experimental and Modeling Study Investigating the Ignition Delay in a Military Diesel Engine Running Hexadecane (Cetane) Fuel
,”
Int. J. Eng. Res.
,
14
(
1
), pp.
57
67
.10.1177/1468087412446884
12.
Dec
,
J. E.
,
1997
, “
A Conceptual Model of DI Diesel Combustion Based on Laser Sheet Imaging
,”
SAE
Technical Paper No. 970873.10.4271/970873
13.
Westbrook
,
C. K.
,
Pitz
,
W. J.
,
Herbinet
,
O.
,
Curran
,
H. J.
, and
Silke
,
E. J.
,
2009
, “
A Detailed Chemical Kinetic Reaction Mechanism for n-Alkane Hydrocarbons From n-Octane to n-Hexadecane
,”
Combust. Flame
,
156
(
1
), pp.
181
199
.10.1016/j.combustflame.2008.07.014
14.
Luning Prak
,
D. J.
,
Trulove
,
P. C.
, and
Cowart
,
J. S.
,
2013
, “
Density, Viscosity, Speed of Sound, Surface Tension, and Flash Point of Binary Mixtures of n-Hexadecane and 2,2,4,4,6,8,8-Heptamethylnonane and of Algal-Based Hydrotreated Renewable Diesel
,”
J. Chem. Eng. Data
,
58
(
4
), pp.
920
926
.10.1021/je301337d
You do not currently have access to this content.