Atomization of fuel is a key integral part for efficient combustion in gas turbines. This demands a thorough investigation of the spray characteristics using innovative and useful spray diagnostics techniques. In this work, an experimental study is carried out on a commercial hollow cone nozzle (Lechler) using laser diagnostics techniques. A hollow cone spray is useful in many applications because of its ability to produce fine droplets. But apart from the droplet diameter, the velocity field in the spray is also an important parameter to monitor and has been addressed in this work. Kerosene is used as the test fuel, which is recycled using a plunger pump providing a variation in the injection pressure from 100 to 300 psi. An innovative diagnostic technique used in this study is through illumination of the spray with a continuous laser sheet and capturing the same with a high speed camera. A ray of a laser beam is converted to a planer sheet using a lens combination which is used to illuminate a cross section of the hollow cone spray. This provides a continuous planar light source which allows capturing high speed images at 285 fps. The high speed images thus obtained are processed to understand the nonlinearity associated with disintegration of the spray into fine droplets. The images are shown to follow a fractal representation and the fractal dimension is found to increase with rise in injection pressure. Also, using PDPA, the droplet diameter distribution is calculated at different spatial and radial locations at a wide range of pressure.

References

1.
Santolaya
,
J.
,
Aísa
,
L.
,
Calvo
,
E.
,
García
,
I.
, and
Cerecedo
,
L.
,
2007
, “
Experimental Study of Near-Field Flow Structure in Hollow Cone Pressure Swirl Sprays
,”
J.Propul. Power
,
23
(
2
), pp.
382
389
.10.2514/1.20713
2.
Datta
,
A.
, and
Som
,
S. K.
,
2000
, “
Numerical Prediction of Air Core Diameter, Coefficient of Discharge and Spray Cone Angle of a Swirl Spray Pressure Nozzle
,”
Int. J. Heat Fluid Flow
,
21
(
4
), pp.
412
419
.10.1016/S0142-727X(00)00003-5
3.
Som
,
S. K.
, and
Mukherjee
,
S. G.
,
1980
, “
Theoretical and Experimental Investigations on the Formation of Air Core in a Swirl Spray Atomizing Nozzle
,”
Appl. Sci. Res.
,
36
(
3
), pp.
173
196
.10.1007/BF00386470
4.
Han
,
Z.
,
Parrish
,
S.
,
Farrell
,
P. V.
, and
Reitz
,
R. D.
,
1997
, “
Modeling Atomization Processes of Pressure-Swirl Hollow Cone Fuel Sprays
,”
Atomization Sprays
,
7
(
6
), pp.
663
684
.
5.
Park
,
H.
, and
Heister
,
S. D.
,
2006
, “
Nonlinear Simulation of Free Surfaces and Atomization in Pressure Swirl Atomizers
,”
Phys. Fluids
,
18
(
5
), p.
052103
.10.1063/1.2197876
6.
Hussein
,
A.
,
Hafiz
,
M. R. H.
,
Wisnoe
,
W.
, and
Jasmi
,
M.
,
2012
, “
Effect of Orifice Diameter on Characteristics of Hollow Cone Swirl Spray Emanating from Simplex Nozzles
,”
AIP Conf. Proc.
,
1440
(
1
), pp.
124
129
.10.1063/1.4704210
7.
Li
,
X.
, and
Shen
,
J.
,
1999
, “
Experimental Study of Sprays from Annular Liquid Jet Breakup
,”
J.Propul. Power
,
15
(
1
), pp.
103
110
.10.2514/2.5397
8.
Sommerfeld
,
M.
,
1998
, “
Analysis of Isothermal and Evaporating Turbulent Sprays by Phase-Doppler Anemometry and Numerical Calculations
,”
Int. J. Heat Fluid Flow
,
19
(
2
), pp.
173
186
.10.1016/S0142-727X(97)10022-4
9.
Soltani
,
M.
,
Ghorbanian
,
K.
,
Ashjaee
,
M.
, and
Morad
,
M.
,
2005
, “
Spray Characteristics of a Liquid–Liquid Coaxial Swirl Atomizer at Different Mass Flow Rates
,”
Aerospace Sci. Technol.
,
9
(
7
), pp.
592
604
.10.1016/j.ast.2005.04.004
10.
Saha
,
A.
,
Lee
,
J. D.
,
Basu
,
S.
, and
Kumar
,
R.
,
2012
, “
Breakup and Coalescence Characteristics of a Hollow Cone Swirling Spray
,”
Phys. Fluids
,
24
(
12
), p.
124103
.10.1063/1.4773065
11.
Mansour
,
A.
, and
Chigier
,
N.
,
1990
, “
Disintegration of Liquid Sheets
,”
Phys. Fluids A
,
2
(
5
), pp.
706
719
.10.1063/1.857724
12.
Lai
,
W. H.
,
Yang
,
K. H.
,
Hong
,
C. H.
, and
Wang
,
M. R.
,
1996
, “
Droplet Transport in Simplex and Air-Assisted Sprays
,”
Atomization Sprays
,
6
(
1
), pp.
27
49
.
13.
Lavergne
,
G.
,
Trichet
,
P.
,
Hebrard
,
P.
, and
Biscos
,
Y.
,
1993
, “
Liquid Sheet Disintegration and Atomization Process on a Simplified Airblast Atomizer
,”
ASME J. Eng. Gas Turbines Power
,
115
(
3
), pp.
461
466
.10.1115/1.2906731
14.
Engelbert
,
C.
,
Hardalupas
,
Y.
, and
Whitelaw
,
J. H.
,
1995
, “
Breakup Phenomena in Coaxial Airblast Atomizers
,”
Proc. R. Soc. London, Ser. A
,
451
(
1941
), pp.
189
229
.10.1098/rspa.1995.0123
15.
Wahono
,
S.
,
Honnery
,
D.
,
Soria
,
J.
, and
Ghojel
,
J.
,
2008
, “
High-Speed Visualisation of Primary Break-Up of an Annular Liquid Sheet
,”
Exp. Fluids
,
44
(
3
), pp.
451
459
.10.1007/s00348-007-0361-8
16.
Carvalho
,
I. S.
, and
Heitor
,
M. V.
,
1998
, “
Liquid Film Break-Up in a Model of a Prefilming Airblast Nozzle
,”
Exp. Fluids
,
24
(
5–6
), pp.
408
415
.10.1007/s003480050190
17.
Negeed
,
E. R.
,
Hidaka
,
S.
,
Kohno
,
M.
, and
Takata
,
Y.
,
2011
, “
Experimental and Analytical Investigation of Liquid Sheet Breakup Characteristics
,”
Int. J. Heat Fluid Flow
,
32
(
1
), pp.
95
106
.10.1016/j.ijheatfluidflow.2010.08.005
18.
Duke
,
D.
,
Honnery
,
D.
, and
Soria
,
J.
,
2010
, “
A Cross-Correlation Velocimetry Technique for Breakup of an Annular Liquid Sheet
,”
Exp. Fluids
,
49
(
2
), pp.
435
445
.10.1007/s00348-009-0817-0
19.
Chatterjee
,
S.
,
Mukhopadhyay
,
A.
, and
Sen
,
S.
,
2013
, “Dynamic Mode Decomposition of Liquid Jet Atomization in a Hybrid Atomizer,” National Propulsion Conference (NPC-2013), Chennai, India, February 21–23, Paper No. 12009.
20.
Duke
,
D.
,
Honnery
,
D.
, and
Soria
,
J.
,
2012
, “
Experimental Investigation of Nonlinear Instabilities in Annular Liquid Sheets
,”
J. Fluid Mech.
,
691
, pp.
594
604
.10.1017/jfm.2011.516
21.
Shavit
,
U.
, and
Chigier
,
N.
,
1995
, “
Fractal Dimensions of Liquid Jet Interface Under Breakup
,”
Atomization Sprays
,
5
(
6
), pp.
525
543
.
22.
Dumouchel
,
C.
,
Cousin
,
J.
, and
Triballier
,
K.
,
2005
, “
Experimental Analysis of Liquid–Gas Interface at Low Weber Number: Interface Length and Fractal Dimension
,”
Exp. Fluids
,
39
(
4
), pp.
651
666
.10.1007/s00348-005-1005-5
23.
Grout
,
S.
,
Dumouchel
,
C.
,
Cousin
,
J.
, and
Nuglisch
,
H.
,
2007
, “
Fractal Analysis of Atomizing Liquid Flows
,”
Int. J. Multiphase Flow
,
33
(
9
), pp.
1023
1044
.10.1016/j.ijmultiphaseflow.2007.02.009
24.
Bérubé
,
D.
, and
Jébrak
,
M.
,
1999
, “
High Precision Boundary Fractal Analysis for Shape Characterization
,”
Comput. Geosci.
,
25
(
9
), pp.
1059
1071
.10.1016/S0098-3004(99)00067-9
You do not currently have access to this content.