Practical aero-engine fuel injection systems are highly complicated, combining complex fuel atomizer and air swirling elements to achieve good fuel-air mixing and long residence time in order to enhance both the combustion efficiency and stability. While a detailed understanding of the multiphase flow processes occurring in a realistic injector has been limited due to the complex geometries and the challenges in near-field measurements, high fidelity, first principles simulation offers, for the first time, the potential for a comprehensive physics-based understanding. In this work, such simulations have been performed to investigate the spray atomization and subsequent droplet transport in a swirling air stream generated by a complex multinozzle/swirler combination. A coupled level set and volume of fluid (CLSVOF) approach is used to directly capture the liquid-gas interface and an embedded boundary (EB) method is applied to flexibly handle the complex injector geometry. The ghost fluid (GF) method is also used to facilitate simulations at a realistic fuel-air density ratio. Adaptive mesh refinement (AMR) and Lagrangian droplet models are used to efficiently resolve the multiscale processes. To alleviate the global constraint on the time step imposed by the locally activated AMR near liquid jets, a separate AMR simulation focusing on jet atomization was performed for a relatively short physical time and the resulting Lagrangian droplets are coupled into another simulation on a uniform grid at larger time-steps. The high cost simulations were performed at the U.S. Department of Defense high performance computing facilities using over 5000 processors. Experiments at the same flow conditions were conducted at the United Technologies Research Center (UTRC). The simulation details of flow velocity and vorticity due to the interaction of the fuel jet and swirling air are presented. The velocity magnitude is compared with the experimental measurement at two downstream planes. The two-phase spray spreading is compared with experimental images and the flow details are further analyzed to enhance the understanding of the complex physics.

References

1.
Cohen
,
J. M.
and
Rosfjord
,
T. J.
,
1993
, “
Influences on the Sprays Formed by High-Shear Fuel Nozzle/Swirler Assemblies
,”
J. Propul. Power
,
9
(
1
), pp.
16
27
.10.2514/3.51351
2.
Schetz
,
J. A.
and
Paddye
,
A.
,
1977
, “
Penetration of a Liquid Jet in Subsonic Airstreams
,”
AIAA J.
,
15
(
10
), pp.
1385
1390
.10.2514/3.60805
3.
Mazallon
,
J.
,
Dai
,
Z.
, and
Faeth
,
G. M.
,
1999
, “
Primary Breakup of Nonturbulent Round Liquid Jets in Gas Crossflows
,”
Atomization Sprays
9
(
3
), pp.
291
312
.
4.
Wu
,
P. K.
,
Kirkendall
,
K. A.
,
Fuller
,
R. P.
, and
Nejad
,
A. S.
,
1997
, “
Breakup Processes of Liquid Jets in Subsonic Crossflows
,”
J. Propul. Power
,
13
(
1
), pp.
64
73
.10.2514/2.5151
5.
Sallam
,
K. A.
,
Aalburg
C.
, and
Faeth
,
G. M.
,
2004
, “
Breakup of Round Nonturbulent Liquid Jets in Gaseous Crossflow
,”
AIAA J.
,
42
(
12
), pp.
2529
2540
.10.2514/1.3749
6.
Shedd
,
T. A.
,
Corn
,
M. L.
,
Cohen
,
J. M.
,
Arienti
,
M.
, and
Soteriou
,
M. C.
,
2010
, “
Liquid Film Formation by an Impinging Jet in a High-Velocity Air Stream
,”
47th AIAA Aerospace Sciences Meeting
, Orlando, FL, January 5–8,
AIAA
Paper No. 2009-998.10.2514/6.2009-998
7.
Arienti
,
M.
,
Wang
,
L.
,
Corn
,
M.
,
Li
,
X.
,
Soteriou
,
M. C.
,
Shedd
,
T. A.
, and
Herrmann
,
M.
,
2011
, “
Modeling Wall Film Formation and Breakup Using an Integrated Interface-Tracking/Discrete-Phase Approach
,”
ASME J. Eng. Gas Turbines Power
,
133
(3), p.
031501
.10.1115/1.4002019
8.
Arienti
,
M.
and
Soteriou
,
M. C.
,
2009
, “
Time-Resolved Proper Orthogonal Decomposition of Liquid Jet Dynamics
,”
Phys. Fluids
,
21
(11), p.
112104
.10.1063/1.3263165
9.
Becker
,
J.
and
Hassa
,
C.
,
2002
, “
Breakup and Atomization of a Kerosene Jet in Crossflow at Elevated Pressure
,”
Atomization Sprays
,
12
(1–3), pp.
49
67
.10.1615/AtomizSpr.v12.i123.30
10.
Sethian
,
J. A.
and
Smereka
,
P.
,
2003
, “
Level Set Methods for Fluid Interfaces
,”
Annu.Rev. Fluid Mech.
,
35
, pp.
341
372
.10.1146/annurev.fluid.35.101101.161105
11.
Scardovelli
,
R.
and
Zaleski
,
S.
,
1999
, “
Direct Numerical Simulation of Free-Surface and Interfacial Flow
,”
Annu. Rev. Fluid Mech.
,
31
, pp.
567
603
.10.1146/annurev.fluid.31.1.567
12.
Tryggvason
,
G.
,
Bunner
,
B.
,
Esmaeeli
,
A.
,
Juric
,
D.
,
Al-Rawahi
,
N.
,
Tauber
,
W.
,
Han
,
J.
,
Nas
,
S.
, and
Jan
,
Y. J.
,
2001
, “
A Front-Tracking Method for the Computations of Multiphase Flow
,”
J. Comput. Phys.
,
169
(
2
), pp.
708
759
.10.1006/jcph.2001.6726
13.
Herrmann
,
M.
,
2008
, “
A Balanced Force Refined Level Set Grid Method for Two-Phase Flows on Unstructured Flow Solver Grids
,”
J. Comput. Phys.
,
227
(
4
), pp.
2674
2706
.10.1016/j.jcp.2007.11.002
14.
Himeno
,
T.
,
Watanabe
,
T.
, and
Konno
,
A.
,
2005
, “
Numerical Analysis for Propellant Management in Rocket Tanks
,”
J. Propul. Power
,
21
(
1
), pp.
76
86
.10.2514/1.4792
15.
Sussman
,
M.
,
Smith
,
K. M.
,
Hussaini
,
M. Y.
,
Ohta
,
M.
, and
Zhi-Wei
,
R.
,
2007
, “
A Sharp Interface Method for Incompressible Two-Phase Flows
,”
J. Comput. Phys.
,
221
(2), pp.
469
505
.10.1016/j.jcp.2006.06.020
16.
Li
,
X.
,
Arienti
,
M.
,
Soteriou
,
M. C.
, and
Sussman
,
M. M.
,
2010
, “
Towards an Efficient, High-Fidelity Methodology for Liquid Jet Atomization Computations
,”
48th Aerospace Sciences Meeting
, Orlando, FL, January 4–7,
AIAA
Paper No. 2010-210.10.2514/6.2010-210
17.
Li
,
X.
,
Soteriou
,
M.
,
Arienti
,
M.
, and
Sussman
,
M.
,
2011
, “
High-Fidelity Simulation of Atomization and Evaporation in a Liquid Jet in Cross-Flow
,”
49th AIAA Aerospace Sciences Meeting
, Orlando, FL, January 4–7,
AIAA
Paper No. 2011-0099.10.2514/6.2011-99
18.
Li
,
X.
and
Soteriou
,
M. C.
,
2012
, “
Prediction of High Density-Ratio Liquid Jet Atomization in Crossflow Using High Fidelity Simulations on HPC
,”
50th AIAA Aerospace Sciences Meeting
, Nashville, TN, January 9–12,
AIAA
Paper No. 2012-0175.10.2514/6.2012-175
19.
Herrmann
,
M.
,
2010
, “
A Parallel Eulerian Interface Tracking/Lagrangian Point Particle Multi-Scale Coupling Procedure
,”
J. Comput. Phys.
,
229
(
3
), pp.
745
759
.10.1016/j.jcp.2009.10.009
20.
Liu
,
X. D.
,
Fedkiw
,
R. P.
, and
Kang
,
M.
,
2000
, “
A Boundary Condition Capturing Method for Poisson's Equation on Irregular Domains
,”
J. Comput. Phys.
,
160
(1), pp.
151
178
.10.1006/jcph.2000.6444
21.
Kang
,
M.
,
Fedkiw
,
R. P.
, and
Liu
,
X. D.
,
2000
, “
A Boundary Condition Capturing Method for Multiphase Incompressible Flow
,”
J. Sci. Comput.
,
15
(
3
), pp.
323
360
.10.1023/A:1011178417620
22.
Berger
,
M. J.
and
Oliger
,
J.
,
1984
, “
Adaptive Mesh Refinement for Hyperbolic Partial Differential Equations
,”
J. Comput. Phys.
,
53
(3), pp.
484
512
.10.1016/0021-9991(84)90073-1
23.
Almgren
,
A. S.
,
Bell
,
J. B.
,
Colella
,
P.
,
Howell
,
L. H.
, and
Welcome
,
M.
,
1998
, “
A Conservative Adaptive Projection Method for the Variable Density Incompressible Navier–Stokes Equations
,”
J. Comput. Phys.
,
142
(1), pp.
1
46
.10.1006/jcph.1998.5890
24.
Sussman
,
M.
and
Dommermuth
,
D.
, 2000, “
The Numerical Simulation of Ship Waves Using Cartesian Grid Methods
,”
Twenty-Third Symposium on Naval Hydrodynamics
, Val de Reuil, France, September 17-22, pp. 762–779.
25.
McVey
,
J. B.
,
Russell
,
S.
, and
Kennedy
,
J. B.
,
1987
, “
High-Resolution Patternator for the Characterization of Fuel Sprays
,”
J. Propul. Power
,
3
(
3
), pp.
202
209
.10.2514/3.22975
26.
Herrmann
,
M.
,
2010
, “
Detailed Numerical Simulations of the Primary Atomization of a Turbulent Liquid Jet in Crossflow
,”
ASME J. Eng. Gas Turbines Power
,
132
(
6
), p.
061506
.10.1115/1.4000148
27.
Herrmann
,
M.
,
Arienti
,
M.
, and
Soteriou
,
M.
,
2011
, “
The Impact of Density Ratio on the Liquid Core Dynamics of a Turbulent Liquid Jet Injected Into a Crossflow
,”
ASME J.Eng. Gas Turbines Power
,
133
(
6
), p.
061501
.10.1115/1.4002273
28.
Herrmann
,
M.
,
2011
, “
The Influence of Density Ratio on the Primary Atomization of a Turbulent Liquid Jet in Crossflow
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
2079
2088
.10.1016/j.proci.2010.07.002
You do not currently have access to this content.