Amplitude-dependent flame transfer functions, also denoted as flame describing functions, are valuable tools for the prediction of limit-cycle amplitudes of thermoacoustic instabilities. However, the effects that govern the transfer function magnitude at low and high amplitudes are not yet fully understood. It is shown in the present work that the flame response at perfectly premixed conditions is strongly influenced by the growth rate of vortical structures in the shear layers. An experimental study in a generic swirl-stabilized combustor was conducted in order to measure the amplitude-dependent flame transfer function and the corresponding flow fields subjected to acoustic forcing. The applied measurement techniques included the multi-microphone-method, high-speed OH*-chemiluminescence measurements, and high-speed particle image velocimetry. The flame response and the corresponding flow fields are assessed for three different swirl numbers at 196 Hz forcing frequency. The results show that forcing leads to significant changes in the time-averaged reacting flow fields and flame shapes. A triple decomposition is applied to the time-resolved data, which reveals that coherent velocity fluctuations at the forcing frequency are amplified considerably stronger in the shear layers at low forcing amplitudes than at high amplitudes, which is an indicator for a nonlinear saturation process. The strongest saturation is found for the lowest swirl number, where the forcing additionally detached the flame. For the highest swirl number, the saturation of the vortex amplitude is weaker. Overall, the amplitude-dependent vortex amplification resembles the characteristics of the flame response very well. An application of a linear stability analysis to the time-averaged flow fields at increasing forcing amplitudes yields the decreasing growth rates of shear flow instabilities at the forcing frequency. It therefore successfully predicts a saturation at high forcing amplitudes and demonstrates that the mean flow field and its modifications are of utmost importance for the growth of vortices in the shear layers. Moreover, the results clearly show that the amplification of vortices in the shear layers is an important driver for heat release fluctuations and their saturation.

References

1.
Rayleigh
,
J. W. S.
,
1878
, “
The Explanation of Certain Acoustical Phenomena
,”
Nature (London)
,
18
(
455
), pp.
319
321
.10.1038/018319a0
2.
Lieuwen
,
T.
, and
Yang
,
V.
,
2005
, “
Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling
,”
Progress in Astronautics and Aeronautics
, Vol.
210
,
American Institute of Aeronautics and Astronautics
,
Reston, VA
.
3.
Syred
,
N.
,
2006
, “
A Review of Oscillation Mechanisms and the Role of the Precessing Vortex Core (PVC) in Swirl Combustion Systems
,”
Prog. Energy Combust.Sci.
,
32
(
2
), pp.
93
161
.10.1016/j.pecs.2005.10.002
4.
Cala
,
C. E.
,
Fernandes
,
E. C.
,
Heitor
,
M. V.
, and
Shtork
,
S. I.
,
2005
, “
Coherent Structures in Unsteady Swirling Jet Flow
,”
Exp. Fluids
,
40
(
2
), pp.
267
276
.10.1007/s00348-005-0066-9
5.
Schadow
,
K. C.
, and
Gutmark
,
E. J.
,
1992
, “
Combustion Instability Related to Vortex Shedding in Dump Combustors and Their Passive Control
,”
Prog. Energy Combust. Sci.
,
18
(
2
), pp.
117
132
.10.1016/0360-1285(92)90020-2
6.
Paschereit
,
C. O.
,
Gutmark
,
E. J.
, and
Weisenstein
,
W.
,
1999
, “
Coherent Structures in Swirling Flows and Their Role in Acoustic Combustion Control
,”
Phys. Fluids
,
11
(
9
), pp.
2667
2678
.10.1063/1.870128
7.
Paschereit
,
C. O.
,
Gutmark
,
E. J.
, and
Weisenstein
,
W.
,
2000
, “
Excitation of Thermoacoustic Instabilities by Interaction of Acoustics and Unstable Swirling Flow
,”
AIAA J.
,
38
(
6
), pp.
1025
1034
.10.2514/2.1063
8.
Keller
,
J. J.
,
1995
, “
Thermoacoustic Oscillations in Combustion Chambers of Gas Turbines
,”
AIAA J.
,
33
(
12
), pp.
2280
2287
.10.2514/3.12980
9.
Gallaire
,
F.
,
Ruith
,
M. R.
,
Meiburg
,
E.
,
Chomaz
,
J.-M.
, and
Huerre
,
P.
,
2006
, “
Spiral Vortex Breakdown as a Global Mode
,”
J. Fluid Mech.
,
549
, pp.
71
90
.10.1017/S0022112005007834
10.
Moeck
,
J. P.
,
Bourgouin
,
J.-F.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2012
, “
Nonlinear Interaction Between a Precessing Vortex Core and Acoustic Oscillations in a Turbulent Swirling Flame
,”
Combust. Flame
,
159
(
8
), pp.
2650
2668
.10.1016/j.combustflame.2012.04.002
11.
Dowling
,
A. P.
,
1997
, “
Nonlinear Self-Excited Oscillations of a Ducted Flame
,”
J. Fluid Mech.
,
346
, pp.
271
290
.10.1017/S0022112097006484
12.
Palies
,
P.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2011
, “
Nonlinear Combustion Instability Analysis Based on the Flame Describing Function Applied to Turbulent Premixed Swirling Flames
,”
Combust. Flame
,
158
(
10
), pp.
1980
1991
.10.1016/j.combustflame.2011.02.012
13.
Cosic
,
B.
,
Moeck
,
J. P.
, and
Paschereit
,
C. O.
,
2013
, “
Nonlinear Instability Analysis for Partially Premixed Swirl Flames
,”
Combust. Sci. Technol.
(online).10.1080/00102202.2013.876420
14.
Schimek
,
S.
,
Moeck
,
J. P.
,
Cosic
,
B.
,
Terhaar
,
S.
, and
Paschereit
,
C. O.
,
2012
, “
Amplitude-Dependent Flowfield and Flame Response to Axial and Tangential Velocity Fluctuations
,”
ASME Turbo Expo 2012
, Copenhagen, Denmark, June 11–15,
ASME
Paper No. GT2012-69785.10.1115/GT2012-69785
15.
Bellows
,
B. D.
,
Bobba
,
M. K.
,
Seitzman
,
J. M.
, and
Lieuwen
,
T.
,
2007
, “
Nonlinear Flame Transfer Function Characteristics in a Swirl-Stabilized Combustor
,”
ASME J. Eng. Gas Turbines Power
,
129
(
4
), pp.
954
961
.10.1115/1.2720545
16.
Thumuluru
,
S.
, and
Lieuwen
,
T.
,
2009
, “
Characterization of Acoustically Forced Swirl Flame Dynamics
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
2893
2900
.10.1016/j.proci.2008.05.037
17.
Oberleithner
,
K.
,
Schimek
,
S.
, and
Paschereit
,
C. O.
,
2012
, “
On the Impact of Shear Flow Instabilities on Global Heat Release Rate Fluctuations: Linear Stability Analysis of an Isothermal and a Reacting Swirling Jet
,”
ASME Turbo Expo
, Copenhagen, Denmark, June 11–15,
ASME
Paper No. GT2012-69774.10.1115/GT2012-69774
18.
Hussain
,
A. K. M. F.
, and
Reynolds
,
W. C.
,
2006
, “
The Mechanics of an Organized Wave in Turbulent Shear Flow
,”
J. Fluid Mech.
,
41
(
2
), p.
241
.10.1017/S0022112070000605
19.
Khorrami
,
M.
,
Malik
,
M.
, and
Ash
,
R.
,
1989
, “
Application of Spectral Collocation Techniques to the Stability of Swirling Flows
,”
J. Comput. Phys.
,
81
(
1
), pp.
206
229
.10.1016/0021-9991(89)90071-5
20.
Crighton
,
D. G.
, and
Gaster
,
M.
,
1976
, “
Stability of Slowly Diverging Jet Flow
,”
J. Fluid Mech.
,
77
(
2
), p.
397
.10.1017/S0022112076002176
21.
Oberleithner
,
K.
,
Sieber
,
M.
,
Nayeri
,
C. N.
,
Paschereit
,
C. O.
,
Petz
,
C.
,
Hege
,
H.-C.
,
Noack
,
B. R.
, and
Wygnanski
,
I. J.
,
2011
, “
Three-Dimensional Coherent Structures in a Swirling Jet Undergoing Vortex Breakdown: Stability Analysis and Empirical Mode Construction
,”
J. Fluid Mech.
,
679
, pp.
383
414
.10.1017/jfm.2011.141
22.
Monkewitz
,
P. A.
, and
Sohn
,
K.
,
1988
, “
Absolute Instability in Hot Jets
,”
AIAA J.
,
26
(
8
), pp.
911
916
.10.2514/3.9990
23.
Terhaar
,
S.
,
Oberleithner
,
K.
, and
Paschereit
,
C. O.
, “
Impact of Steam-Dilution on the Flame Shape and Coherent Structures in Swirl-Stabilized Combustors
,”
Combust. Sci. Technol.
(in press)10.1080/00102202.2014.890597.
24.
Lim
,
D. W.
, and
Redekopp
,
L. G.
,
1998
, “
Absolute Instability Conditions for Variable Density, Swirling Jet Flows
,”
Eur. J. Mech.-B/Fluids
,
17
(
2
), pp.
165
185
.10.1016/S0997-7546(98)80057-5
25.
Cohen
,
J.
, and
Wygnanski
,
I. J.
,
1987
, “
The Evolution of Instabilities in the Axisymmetric Jet. Part 1. The Linear Growth of Disturbances Near the Nozzle
,”
J. Fluid Mech.
,
176
, pp.
191
219
.10.1017/S0022112087000624
26.
Cohen
,
J.
, and
Wygnanski
,
I. J.
,
1987
, “
The Evolution of Instabilities in the Axisymmetric Jet. Part 2. The Flow Resulting From the Interaction Between Two Waves
,”
J. Fluid Mech.
,
176
, pp.
221
235
.10.1017/S0022112087000636
27.
Gudmundsson
,
K.
, and
Colonius
,
T.
,
2008
, “
Nonlinear Parabolized Stability Equation Models for Turbulent Jets and Their Radiated Sound
,” 61st Annual Meeting of the APS Division of Fluid Dynamics, San Antonio, TX, November 23–25, Abstract No. LF.00002, available at: http://meetings.aps.org/link/BAPS.2008.DFD.LF.2
28.
Leuckel
,
W.
,
1967
, “
Swirl Intensities, Swirl Types and Energy Losses of Different Swirl Generating Devices
”.
International Flame Research Foundation, Ijmuiden, The Netherlands, Doc. No. G02/a/16.
29.
Terhaar
,
S.
,
Bobusch
,
B. C.
, and
Paschereit
,
C. O.
,
2012
, “
Effects of Outlet Boundary Conditions on the Reacting Flow Field in a Swirl-Stabilized Burner at Dry and Humid Conditions
,”
ASME J. Eng. Gas Turbines Power
,
134
(
11
), p. 111501.10.1115/1.4007165
30.
Paschereit
,
C. O.
,
Schuermans
,
B.
,
Polifke
,
W.
, and
Mattson
,
O.
,
2002
, “
Measurement of Transfer Matrices and Source Terms of Premixed Flames
,”
ASME J. Eng. Gas Turbines Power
,
124
(
2
), pp.
239
247
.10.1115/1.1383255
31.
Schuermans
,
B.
,
Güthe
,
F.
,
Pennell
,
D.
,
Guyot
,
D.
, and
Paschereit
,
C. O.
,
2010
, “
Thermoacoustic Modeling of a Gas Turbine Using Transfer Functions Measured Under Full Engine Pressure
,”
ASME J. Eng. Gas Turbines Power
,
132
(
11
), p.
111503
.10.1115/1.4000854
32.
Balachandran
,
R.
,
Ayoola
,
B. O.
,
Kaminski
,
C. F.
,
Dowling
,
A. P.
, and
Mastorakos
,
E.
,
2005
, “
Experimental Investigation of the Nonlinear Response of Turbulent Premixed Flames to Imposed Inlet Velocity Oscillations
,”
Combust. Flame
,
143
(
1–2
), pp.
37
55
.10.1016/j.combustflame.2005.04.009
You do not currently have access to this content.