To reduce the size and weight of power generation machines for portable devices, several systems to replace the currently used heavy batteries are being investigated worldwide. As micro gas turbines are expected to offer the highest power density, several research groups launched programs to develop ultra micro gas turbines: IHI firm (Japan), PowerMEMS Consortium (Belgium). At Onera, a research program called DecaWatt is under development in order to realize a demonstrator of a micro gas turbine engine in the 50 to 100 Watts electrical power range. A single-stage gas turbine is currently being studied. First of all, a calculation of the overall efficiency of the micro gas turbine engine has been carried out according to the pressure ratio, the turbine inlet temperature, and the compressor and turbine efficiencies. With realistic hypotheses, we could obtain an overall efficiency of about 5% to 10%, which leads to around 200 W/kg when taking into account the mass of the micro gas turbine engine, its electronics, fuel and packaging. Moreover, the specific energy could be in the range 300 to 600 Wh/kg, which largely exceeds the performance of secondary batteries. To develop such a micro gas turbine engine, experimental and computational work focused on: (1) a 10-mm diameter centrifugal compressor, with the objective to obtain a pressure ratio of about 2.5; (2) a radial inflow turbine; (3) journal and thrust gas bearings (lobe bearings and spiral grooves) and their manufacturing; (4) a small combustor working with hydrogen or hydrocarbon gaseous fuel (propane); (5) a high rotation speed microgenerator; and (6) the choice of materials. Components of this tiny engine were tested prior to the test with all the parts assembled together. Tests of the generator at 700,000 rpm showed a very good efficiency of this component. In the same way, compressor testing was performed up to 500,000 rpm and showed that the nominal compression rate at the 840,000 rpm nominal speed should nearly be reached.

References

1.
Lee
,
D. H.
,
Park
,
D. E.
, and
Yoon
,
E.
,
2003
, “
A MEMS Piston-Cylinder Device Actuated by Combustion
,”
ASME J. Heat Transf.
,
125
(3), pp.
487
493
.10.1115/1.1565095
2.
Chuan Chia
,
L.
, and
Feng
,
B.
,
2007
, “
The Development of a Micropower (Micro-Thermophotovoltaic) Device
,”
J. Power Sources
,
165
(1), pp.
455
480
.10.1016/j.jpowsour.2006.12.006
3.
Nielsen
,
O. M.
,
Arana
,
L. R.
,
Baertsch
,
C. D.
,
Jensen
,
K. F.
, and
Schmidt
,
M. A.
,
2003
, “
A Thermophotovoltaic Micro-Generator for Portable Power Applications
,”
12th International Conference on Solid State Sensors, Actuators and Microsystems
, Boston, MA, June 8–12.
4.
Yang
,
W. M.
,
Chou
,
S. K.
,
Shu
,
C.
,
Li
,
Z. W.
, and
Xue
,
H.
,
2003
Research on Micro-Thermophotovoltaic Power Generators
,”
Solar Energ. Mat. Solar Cells
,
80
(1), pp.
95
104
.10.1016/S0927-0248(03)00135-1
5.
Yoshida
,
K.
,
Tanaka
,
S.
,
Tomonari
,
S.
,
Satoh
,
D.
, and
Esashi
,
M.
,
2006
, “
High-Energy Density Miniature Thermoelectric Generator Using Catalytic Combustion
,”
JMEMS
,
15
(1), pp.
195
203
.10.1109/JMEMS.2005.859202
6.
Walther
,
D. C.
, and
Pisano
,
A. P.
,
2003
, “
MEMS Rotary Engine Power System: Project Overview and Recent Research Results
,” PowerMEMS 2003, Makuhari, Japan, December 4–5.
7.
Liamini
,
M.
,
Shahriar
,
H.
,
Vengallatore
,
S.
, and
Frechette
,
L.
,
2011
, “
Design Methodology for a Rankine Microturbine: Thermomechanical Analysis and Material Selection
,”
JMEMS
,
20
(1), pp.
339
351
.10.1109/JMEMS.2010.2093565
8.
Demierre
,
J.
,
Henchoz
,
S.
, and
Favrat
,
D.
,
2012
, “
Prototype of a Thermally Driven Heat Pump Based on Integrated Organic Rankine Cycles (ORC)
,”
Energy
,
41
(1), pp.
10
17
.10.1016/j.energy.2011.08.049
9.
Gomez
,
A.
,
Berry
,
J. J.
,
Roychoudhury
,
S.
,
Coriton
,
B.
, and
Huth
,
J.
,
2006
, “
From Jet Fuel to Electric Power Using a Mesoscale, Efficient Stirling Cycle
,”
31st International Combustion Symposium
, Heidelberg, Germany, August 6–11.
10.
Formosa
,
F.
,
2009
, “
Nonlinear Dynamics of a Membrane Stirling Engine: Starting and Stable Operation
,”
J. Sound Vib.
,
326
(3–5), pp.
794
808
.10.1016/j.jsv.2009.05.025
11.
Dyer
,
C. K.
,
2004
, “
Fuel Cells and Portable Electronics
,”
2004 Symposium on VLSI Circuits
, Honolulu, HI, June 17–19. 10.1109/VLSIC.2004.1346530
12.
Mitsos
,
A.
,
Chachuat
,
B.
, and
Barton
,
P. I.
,
2007
, “
What Is the Design Objective for Portable Power Generation: Efficiency or Energy Density?,
J. Power Sources
,
164
(2), pp.
678
687
.10.1016/j.jpowsour.2006.10.088
13.
Epstein
,
A. H.
,
2003
, “
Millimeter-Scale, MEMS Gas Turbine Engines
,” ASME Turbo Expo 2003, Atlanta, GA, June 16–19,
ASME
Paper No. GT2003-38866. 10.1115/GT2003-38866
14.
Peirs
,
J.
,
Verplaesten
,
F.
, and
Reynaerts
,
D.
,
2004
, “
A Micro Gas Turbine Unit for Electric Power Generation: Design and Testing of Turbine and Compressor
,”
9th International Conference on New Actuators (Actuator 2004)
, Bremen, Germany, June 14–16.
15.
Isomura
,
K.
,
2012
, “
A Promising Technology for Powering Humanoid Robots?—Development of an Ultra-Compact Gas Turbine Capable of Generating Large Amounts of Power Anywhere
,”
Jap. Qual. Rev.
,
13
, pp.
24
27
.
16.
Pello
,
C. F.
,
2002
, “
Micro-Power Generation Using Combustion: Issues and Approaches
,”
21th International Symposium on Combustion
, Sapporo, Japan, July 21–26.
17.
Monroe
,
M. A.
,
Epstein
,
A. H.
,
Kumakura
,
H.
, and
Isomura
,
K.
,
2005
, “
Component Integration and Loss Sources in 3-5 kW Gas Turbines
,” ASME Turbo Expo 2005, Reno, NV, June 6–9,
ASME
Paper No. GT2005-68715. 10.1115/GT2005-68715
18.
Burguburu
,
S.
,
Fourmaux
,
A.
, and
Guidez
,
J.
,
2009
, “
Numerical Design of an Ultra Micro-Compressor and Micro-Turbine
,” XIX International Symposium on Air Breathing Engines (ISABE 2009), Montreal, Canada, September 7–11, Paper No. ISABE-2009-1306.
19.
Nicoul
,
F. X.
,
Guidez
,
J.
,
Dessornes
,
O.
, and
Ribaud
,
Y.
,
2007
, “
Two Stage Ultra Micro Turbine: Thermodynamic and Performance Study
,” PowerMEMS 2007, Freiburg, Germany, November 28–29.
20.
Guidez
,
J.
,
Nicoul
,
F. X.
,
Josso
,
P.
, and
Valle
,
R.
, “
Development of a Micro Gas Turbine Engine at Onera
,” XIX International Symposium on Air Breathing Engines (ISABE 2009), Montreal, Canada, September 7–11, Paper No. ISABE 2009-1307.
21.
Isomura
,
K.
,
Teramoto
,
S.
,
Togo
,
S.
I
.
,
Hikichi
,
K.
,
Endo
,
Y.
, and
Tanaka
,
S.
,
2006
, “
Effects of Reynolds Number and Tip Clearances on the Performance of a Centrifugal Compressor at Micro Scale
,” ASME Turbo Expo 2006, Barcelona, Spain, May 8–11,
ASME
Paper No. GT2006-90637. 10.1115/GT2006-90637
22.
Arnold
,
D. P.
,
Herrault
,
F.
,
Zana
, I
.
,
Galle
,
P.
,
Park
,
J. W.
,
Das
,
S.
,
Lang
,
J. H.
, and
Allen
,
M. G.
,
2006
, “
Design Optimization of an 8-Watt, Microscale, Axial-Flux, Permanent-Magnet Generator
,”
J. Micromech. Microeng.
,
16
(9), pp.
290
296
.10.1088/0960-1317/16/9/S17
23.
Zwyssig
,
C.
, and
Kolar
,
J. W.
,
2006
, “
Design Considerations and Experimental Results of a 100 W, 500,000 rpm Electrical Generator
,”
J. Micromech. Microeng.
,
16
(9), pp.
297
302
.10.1088/0960-1317/16/9/S18
24.
Luomi
,
J.
Zwyssig
,
C.
,
Looser
,
A.
, and
Kolar
,
J. W.
,
2009
,“
Efficiency Optimization of a 100-W 500 000-r/min Permanent-Magnet Machine Including Air-Friction Losses
,”
IEEE Trans. Ind. Appl.
,
45
(4), pp.
1368
1377
.10.1109/TIA.2009.2023492
25.
Dessornes
,
O.
, and
Zwyssig
,
C.
,
2010
, “
Micro-Generator for Ultra Micro Gas Turbine
,” PowerMEMS 2010, Leuven, Belgium, November 30–December 3.
26.
Hikichi
,
K.
,
Togo
,
S.
,
Isomura
,
K.
,
Saji
,
N.
,
Esashi
,
M.
, and
Tanaka
,
S.
,
2009
, “
Ultra-High Speed Tape-Type Radial Foil Bearing for Micro Turbomachinery
,” PowerMEMS 2009, Washington DC, December 1–4.
27.
Waumans
,
T.
,
Peirs
,
J.
,
Al-Bender
,
F.
, and
Reynaerts
,
D.
,
2011
, “
Aerodynamic Journal Bearing With a Flexible, Damped Support Operating at 7.2 Million DN
,”
J. Micromech. Microeng.
,
21
(10), p.
104014
.10.1088/0960-1317/21/10/104014
28.
Landais
,
S.
,
Bouamrane
,
F.
,
Bouvet
,
T.
,
Dessornes
,
O.
,
Josso
,
P.
,
Megtert
,
S.
, and
Valle
,
R.
,
2010
,”
Procédé de fabrication d'objets de grande précision par lithographie haute résolution et par formage par dépôt par voie sèche et objets ainsi obtenus. (Process for Fabricating High Precision Objects by High-Resolution Lithography and Dry Deposition and Objects Thus Obtained)
,” Patent: FR 2 970 092, WO 2012/089934.
29.
Chen
,
W. J.
, and
Gunter
,
E. J.
,
2005
,
Introduction to Dynamics of Rotor-Bearing Systems
,
Trafford Publishing
,
Bloomington, IN
.
You do not currently have access to this content.