Spark assisted compression ignition (SACI) is a combustion mode that may offer significant efficiency improvements compared to conventional spark-ignited combustion systems. Unfortunately, SACI is constrained to a relatively narrow range of dilution levels and top dead center temperatures. Both positive valve overlap (PVO) and negative valve overlap (NVO) strategies may be utilized to attain these conditions at low and intermediate engine loads. The current work compares 1D thermodynamic simulations of PVO valving strategies and a baseline NVO strategy in a downsized boosted automotive engine with variable valve timing capability. As future downsized boosted engines may employ multiple combustion modes, the goal of this work is the definition of valving strategies appropriate for SACI combustion at low to moderate loads and spark ignition (SI) combustion at moderate to high loads for an engine with fixed camshaft profiles. PVO durations, valve opening timings, and peak lifts are investigated at low to moderate loads and are compared to a baseline NVO configuration in order to assess valving strategies appropriate for multimode combustion operation. A valvetrain kinematic model is used to translate the desired valve lift profiles into camshaft profiles while a kinematic analysis is used to calculate piston to valve clearances and to define the practical limits of the PVO strategies. The NVO and PVO strategies are also compared to throttled SI operation at part load to assess the overall efficiency benefit of operating under the thermodynamic conditions of the SACI combustion regime. While the results of this study are engine specific, there are several camshaft profiles that are appropriate for the use of PVO rebreathing type valve events. For the range of PVO valve events examined and taking into consideration piston to valve interference, the use of high exhaust and low intake lifts with early exhaust valve opening timing and long PVO durations enables high levels of internal exhaust gas recirculation (EGR) with relatively low pumping losses.

References

1.
Manofsky Olesky
,
L.
,
Martz
,
J.
,
Lavoie
,
G.
,
Vavra
,
J.
,
Assanis
,
D.
, and
Babajimopoulos
,
A.
,
2013
, “
The Effects of Spark Timing, Unburned Gas Temperatures, and Negative Valve Overlap on the Rates of Stoichiometric Spark Assisted Compression Ignition Combustion
,”
Appl. Energy
,
105
(
2013
), pp.
407
417
.10.1016/j.apenergy.2013.01.038
2.
Yun
,
H.
,
Wermuth
,
N.
, and
Najt
,
P.
,
2011
, “
High Load HCCI Operation Using Different Valving Strategies in a Naturally-Aspirated Gasoline HCCI Engine
,”
SAE
Paper No. 2011-01-0899.10.4271/2011-01-0899
3.
Persson
,
H.
,
Hultqvist
,
A.
,
Johansson
,
B.
, and
Remón
,
A.
,
2007
, “
Investigation of the Early Flame Development in Spark Assisted HCCI Combustion Using High Speed Chemiluminescence Imaging
,”
SAE
Paper No. 2007-01-0212.10.4271/2007-01-0212
4.
Reuss
,
D. L.
,
Kuo
,
T. W.
,
Silvas
,
G.
,
Natarajan
,
V.
, and
Sick
,
V.
,
2008
, “
Experimental Metrics for Identifying Origins of Combustion Variability During Spark-Assisted Compression Ignition
,”
Int. J. Eng. Res.
,
9
(
5
), pp.
409
434
.10.1243/14680874JER01108
5.
Zigler
,
B. T.
,
Keros
,
P. E.
,
Helleberg
,
K. B.
,
Fatouraie
,
M.
,
Assanis
,
D.
, and
Wooldridge
,
M. S.
,
2011
, “
An Experimental Investigation of the Sensitivity of the Ignition and Combustion Properties of a Single-Cylinder Research Engine to Spark-Assisted HCCI
,”
Int. J. Eng. Res.
,
12
(
4
), pp.
353
375
.10.1177/1468087411401286
6.
Huang
,
Y.
,
Sung
,
C. J.
, and
Eng
,
J. A.
,
2004
, “
Dilution Limits of n-Butane/Air Mixtures Under Conditions Relevant to HCCI Combustion
,”
Combust. Flame
,
136
(
4
), pp.
457
466
.10.1016/j.combustflame.2003.10.011
7.
Martz
,
J. B.
,
Middleton
,
R. J.
,
Lavoie
,
G. A.
,
Babajimopoulos
,
A.
, and
Assanis
,
D. N.
,
2011
, “
A Computational Study and Correlation of Premixed Isooctane–Air Laminar Reaction Front Properties Under Spark Ignited and Spark Assisted Compression Ignition Engine Conditions
,”
Combust. Flame
,
158
(
6
), pp.
1089
1096
.10.1016/j.combustflame.2010.09.014
8.
Martz
,
J. B.
,
Lavoie
,
G. A.
,
Im
,
H. G.
,
Middleton
,
R. J.
,
Babajimopoulos
,
A.
, and
Assanis
,
D. N.
,
2012
, “
The Propagation of a Laminar Reaction Front During End-Gas Auto-Ignition
,”
Combust. Flame
,
159
(
6
), pp.
2077
2086
.10.1016/j.combustflame.2012.01.011
9.
Middleton
,
R. J.
,
Martz
,
J. B.
,
Lavoie
,
G. A.
,
Babajimopoulos
,
A.
, and
Assanis
,
D. N.
,
2012
, “
A Computational Study and Correlation of Premixed Isooctane Air Laminar Reaction Fronts Diluted With EGR
,”
Combust. Flame
,
159
(
10
), pp.
3146
3157
.10.1016/j.combustflame.2012.04.014
10.
Lavoie
,
G.
,
Martz
,
J.
,
Woolridge
,
M.
, and
Assanis
,
D.
,
2010
, “
A Multi-Mode Combustion Diagram on Gasoline HCCI Combustion
,”
Combust. Flame
,
157
(
6
), pp.
1106
1110
.10.1016/j.combustflame.2010.02.009
11.
Lavoie
,
G.
,
Ortiz-Soto
,
E.
,
Babajimopoulos
,
A.
,
Martz
,
J.
, and
Assanis
,
D.
,
2012
, “
Thermodynamic Sweet Spot for High-Efficiency, Dilute, Boosted Gasoline Engine
,”
Int. J. Eng. Res.
,
14
(
3
), pp.
260
278
.10.1177/1468087412455372
12.
Manofsky
,
L.
,
Vavra
,
J.
,
Assanis
,
D.
, and
Babajimopoulos
,
A.
,
2011
, “
Bridging the Gap Between HCCI and SI: Spark-Assisted Compression Ignition
,”
SAE
Paper No. 2011-01-1179.10.4271/2011-01-1179
13.
Babajimopoulos
,
A.
,
Lavoie
,
G.
, and
Assanis
,
D.
,
2003
, “
Modeling HCCI Combustion With High Levels of Residual Gas Fraction—A Comparison of Two VVA Strategies
,”
SAE
Paper No. 2003-01-3220.10.4271/2003-01-3220
14.
Wolters
,
P.
,
Salber
,
W.
,
Geiger
,
J.
,
Duesmann
,
M.
, and
Dilthey
,
J.
,
2003
, “
Controlled Auto Ignition Combustion Process With an Electromechanical Valve Train
,”
SAE
Paper No. 2003-01-0032.10.4271/2003-01-0032
15.
Li
,
L.
,
Xie
,
H.
,
Chen
,
T.
,
Yu
,
W.
, and
Zhao
,
H.
,
2012
, “
Experimental Study on Spark Assisted Compression Ignition (SACI) Combustion With Positive Valve Overlap in a HCCI Gasoline Engine
,”
SAE
Paper No. 2012-01-1126.10.4271/2012-01-1126
16.
Gamma Technologies
,
2014
, “
GT-Suite V7.2
,”
Gamma Technologies, Inc.
,
Westmont, IL
, http://www.gtisoft.com
17.
Woschni
,
G.
,
1967
, “
Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine
,”
SAE
Paper No. 670931.10.4271/670931
18.
Gamma Technologies
,
2011
, “
GT-Suite Engine Performance Application Manual, Version 7.2
,” Gamma Technologies, Westmont, IL.
19.
Chen
,
S.
, and
Flynn
,
P.
,
1965
, “
Development of a Single Cylinder Compression Ignition Research Engine
,”
SAE
Paper No. 650733.10.4271/650733
20.
Shingne
,
P.
,
Gerow
,
M.
,
Triantopoulos
,
V.
,
Bohac
,
S.
, and
Martz
,
J.
,
2013
, “
A Comparison of Valving Strategies Appropriate for Multi-Mode Combustion Within a Downsized Boosted Automotive Engine—Part I: High Load Operation Within the SI Combustion Regime
,”
ASME J. Eng. Gas Turbines Power
136
(
10
), p.
101507
.10.1115/1.4027359
21.
Livengood
,
J. C.
, and
Wu
,
P. C.
,
1955
, “
Combustion of Auto-Ignition Phenomena in Internal Combustion Engines and Rapid Compression Machines
,”
Proc. Combust. Inst.
,
5
(
1
), pp.
347
356
.10.1016/S0082-0784(55)80047-1
22.
He
,
X.
,
Donovan
,
M. T.
,
Zigler
,
B. T.
,
Palmer
,
T. R.
,
Walton
,
S. M.
,
Wooldridge
,
M. S.
, and
Atreya
,
A.
,
2005
, “
An Experimental and Modeling Study of Iso-Octane Ignition Delay Times at Homogeneous Charge Compression Ignition Conditions
,”
Combust. Flame
,
142
(
3
), pp.
266
275
.10.1016/j.combustflame.2005.02.014
You do not currently have access to this content.