The extension of gas fuel flexibility in the Siemens SGT-300 single shaft (SGT-300-1S) is reported. A successful development program has increased the capability of the Siemens Industrial Turbomachinery, Lincoln (SITL) dry low emissions (DLE) burner configuration to a fuel range covering a Wobbe index (WI) from 15 to 49 MJ/Sm3. The WI reported in this paper is at a 15 °C fuel temperature. The standard SGT-300-1S SITL DLE combustion hardware allows for gas and liquid fuels within a specified range typically associated with natural gas and diesel, respectively. The range of the WI associated with natural gas is 37–49 MJ/Sm3. Field operation of the standard production SGT-300-1S has confirmed the reliable operation with an extension to the fuels range to include processed landfill gas (PLG) from 30 to 49 MJ/Sm3. The further extension of the fuel range for the SGT-300-1S SITL DLE combustion system was achieved through high pressure testing of a single combustion system at engine operating conditions and representative fuels. The variations in the fuel heating value were achieved by blending natural gas with diluent CO2 and/or N2. Various diagnostics were used to assess the performance of the combustion system, including the measurement of combustion dynamics, temperature, fuel supply pressure, and the emissions of NOx, CO, and unburned hydrocarbons (UHCs). The results of the testing showed that the standard production burner can operate for a fuel with a WI as low as 23 MJ/Sm3, which corresponds to 35% CO2 (by volume) in the fuel. This range can be extended to 15 MJ/Sm3 (54.5% CO2 in the fuel) with only minor modification to control losses through the burner and to maintain similar fuel injection characteristics. The SITL DLE combustion system is able to cover a WI range of 15 to 49 MJ/Sm3 in two configurations. The results of testing showed a lowering in the WI, by diluting with CO2 and/or N2, so that a benefit in the NOx reduction is observed. This decrease in the WI may lead to an increased requirement of the fuel supply pressure.

References

1.
Bulat
,
G.
,
Liu
,
K.
,
Brickwood
,
G.
,
Sanderson
,
V.
, and
Igoe
,
B.
,
2011
, “
Intelligent Operation of Siemens (SGT-300) DLE Gas Turbine Combustion System Over an Extended Fuel Range With Low Emissions
,”
ASME
Paper No. GT2011-46103, pp.
917
925
.10.1115/GT2011-46103
2.
Kowkabie
,
M.
,
Noden
,
R.
, and
De Pietro
,
S.
,
1997
, “
The Development of a Dry Low NOx Combustion System for the EGT Typhoon
,” ASME Paper No. 97-GT-60.
3.
Liu
,
K.
,
Wood
,
J. P.
,
Buchanan
,
E.
,
Martin
,
P.
, and
Sanderson
,
V. E.
,
2010
, “
Biodiesel as an Alternative Fuel in Siemens Dry Low Emissions Combustors: Atmospheric and High Pressure Rig Testing
,”
ASME J. Eng. Gas Turbines Power
132
, p.
011501
.10.1115/1.3204617
4.
University of New Hampshire, 2012, “UNH Cogeneration Facility,” http://www.energy.unh.edu/cogen.html
5.
Ren
,
J. Y.
,
Egolfopoulos
,
F. N.
,
Mak
,
H.
, and
Tsotsis
,
T. T.
,
2002
, “
NOx Emission Control of Lean Methane-Air Combustion With Addition of Methane Reforming Products
,”
Combust. Sci. Technol.
,
174
, pp.
181
205
.10.1080/713713016
6.
Lafay
,
Y.
,
Renou
,
B.
,
Cabot
,
G.
, and
Boukhalfa
,
M.
,
2007
, “
Experimental Determination of Laminar Flame Thickness for CO2 and H2 Diluted Methane/Air Flames
,”
Proceedings of the 3rd European Combustion Meeting
, Chania, Crete, April 11–13.
7.
Cohe
,
C.
,
Chauveau
,
C.
, and
Gokalp
,
I.
,
2009
, “
CO2 Addition Effect in High Pressure CH4-Air Turbulent Premixed Flames
,”
Proc. Combust. Inst.
,
32
, pp.
1803
1810
.10.1016/j.proci.2008.06.181
8.
Ren
,
J. Y.
,
Qin
,
W.
,
Egolfopoulos
,
F. N.
,
Mak
,
H.
, and
Tsotsis
,
T. T.
,
2001
, “
Methane Reforming and Its Potential Effect on the Efficiency and Pollutant Emissions of Lean Methane-Air Combustion
,”
Chem. Eng. Sci.
,
56
, pp.
1541
1549
.10.1016/S0009-2509(00)00381-X
9.
Qin
,
Q.
,
Egolfopoulos
,
F. N.
, and
Tsotsis
,
T. T.
,
2001
, “
Fundamental and Environmental Aspects of Landfill Gas Utilization for Power Generation
,”
Chem. Eng. Sci.
,
82
, pp.
157
172
.10.1016/S1385-8947(00)00366-1
10.
Kishore
,
V. R.
,
Duan
,
N.
,
Ravi
,
M. R.
, and
Ray
,
A.
,
2008
, “
Measurement of Adiabatic Burning Velocity in Natural Gas Like Mixtures
,”
Exp. Therm. Fluid Sci.
,
33
, pp.
10
16
.10.1016/j.expthermflusci.2008.06.001
11.
Liu
,
F.
,
Guo
,
H.
, and
Smallwood
,
G.
,
2003
, “
The Chemical Effect of CO2 Replacement of N2 in Air on the Burning Velocity of CH4 and H2 Premixed Flames
,”
Combust. Flame
,
133
, pp.
495
497
.10.1016/S0010-2180(03)00019-1
12.
Glarborg
,
P.
, and
Bentzen
,
L. L. B.
,
2008
, “
Chemical Effects of a High CO2 Concentration in Oxy-Fuel Combustion of Methane
,”
Energy Fuels
,
22
, pp.
291
296
.10.1021/ef7005854
13.
Fackler
,
K. B.
,
Karalus
,
M. F.
,
Novosselov
,
I. V.
,
Kramlich
,
J. C.
, and
Malte
,
P. C.
,
2011
, “
Experimental and Numerical Study of NOx Formation From the Lean Premixed Combustion of CH4 Mixed With CO2 and N2
,”
ASME
Paper No. GT2011-45090.10.1115/GT2011-45090
14.
Dobbeling
,
K.
,
Meeuwissen
,
T.
,
Zajadatz
,
M.
, and
Flohr
,
P.
,
2008
, “
Fuel Flexibility of the Alstom GT132E Medium Sized Gas Turbine
,”
ASME
Paper No. GT2008-50950.10.1115/GT2008-50950
15.
Liu
,
K.
,
Alexander
,
V.
,
Sanderson
,
V.
, and
Bulat
,
G.
,
2012
, “
Extension of Fuel Flexibility in the Siemens Dry Low Emissions SGT-300-1S to Cover a Wobbe Index Range of 15–49 MJ/Sm3
,” ASME Paper No. GT2012-68838.
16.
Elkady
,
A. M.
,
Brand
,
A. R.
,
Vandervort
,
C. L.
, and
Evulet
,
A. T.
,
2011
, “
Exhaust Gas Recirculation Performance in Dry Low Emissions Combustors
,”
ASME
Paper No. GT2011-46482.10.1115/GT2011-46482
17.
Thiruchengode
,
M.
,
Nair
,
S.
,
Prakash
,
S.
,
Scarborough
,
D.
,
Neumeier
,
Y.
,
Lieuwen
,
T.
,
Jagoda
,
J.
,
Seitzman
,
J.
, and
Zinn
,
B.
,
2003
, “
An Active Control System for LBO Margin Reduction in Turbine Engines
,”
Proceedings of the 41st Aerospace Sciences Meeting and Exhibit, Reno, NV, January 6–9
, AIAA Paper No. 2003-1008.
18.
Asti
,
A.
,
Stewart
,
J. F.
,
Forte
,
A.
,
Yilmaz
,
E.
, and
D'Ercole
,
M.
,
2008
, “
Enlarging the Fuel Flexibility Boundaries: Theoretical and Experimental Application to a New Heavy-Duty Gas Turbine (MS5002E)
,”
ASME
Paper No. GT2008-50773.10.1115/GT2008-50773
19.
Cocchi
,
S.
,
Provenzale
,
M.
, and
Ceccherini
,
G.
,
2007
, “
Fuel Flexibility Test Campaign on a 10 MW Class Gas Turbine Equipped With a Dry-Low-NOx Combustion System
,”
ASME
Paper No. GT2007-27154.10.1115/GT2007-27154
20.
Lafay
,
Y.
,
Cabot
,
G.
, and
Boukhalfa
,
A.
,
2006
, “
Experimental Study of Biogas Combustion Using a Gas Turbine Configuration
,”
13th International Symposium on the Application of Laser Techniques to Fluid Mechanics
, Lisbon, Portugal, June 26–29.
21.
Rokke
,
P. E.
, and
Hustad
,
J. E.
,
2005
, “
Exhaust Gas Recirculation in Gas Turbines for Reduction of CO2 Emissions: Combustion Testing With Focus on Stability and Emissions
,”
Int. J. Thermodyn.
,
8
, pp.
167
173
, available at: http://www.doaj.org/doaj?func=openurl&genre=journal&issn=13019724&volume=8&issue=4&date=2005&uiLanguage=en
22.
Liu
,
K.
, and
Sanderson
,
V.
,
2012
, “
The Influence of Changes in Fuel Calorific Value to Combustion Performance for Siemens SGT-300 Dry Low Emission Combustion System
,”
J. Fuel
(in press).10.1016/j.fuel.2012.07.068
You do not currently have access to this content.