Flashback is the main operability issue associated with converting lean, premixed combustion systems from operation on natural gas to operation on high hydrogen content fuels. Most syngas fuels contain some amount of hydrogen (15–100%) depending on the fuel processing scheme. With this variability in the composition of syngas, the question of how fuel composition impacts flashback propensity arises. To address this question, a jet burner configuration was used to develop systematic data for a wide range of compositions under turbulent flow conditions. The burner consisted of a quartz burner tube confined by a larger quartz tube. The use of quartz allowed visualization of the flashback processes occurring. Various fuel compositions of hydrogen, carbon monoxide, and natural gas were premixed with air at equivalence ratios corresponding to constant adiabatic flame temperatures (AFT) of 1700 K and 1900 K. Once a flame was stabilized on the burner, the air flow rate would be gradually reduced while holding the AFT constant via the equivalence ratio until flashback occurred. Schlieren and intensified OH* images captured at high speeds during flashback allowed some additional understanding of what is occurring during the highly dynamic process of flashback. Confined and unconfined flashback data were analyzed by comparing data collected in the present study with existing data in the literature. A statistically designed test matrix was used which allows analysis of variance of the results to be carried out, leading to correlation between fuel composition and flame temperature with (1) critical flashback velocity gradient and (2) burner tip temperature. Using the burner tip temperature as the unburned temperature in the laminar flame speed calculations showed increased correlation of the flashback data and laminar flame speed as opposed to when the actual unburned gas temperature was used.

References

1.
Lieuwen
,
T.
,
Mcdonell
,
V.
,
Santavicca
,
D.
, and
Sattelmayer
,
T.
,
2008
, “
Burner Development and Operability Issues Associated With Steady Flowing Syngas Fired Combustors
,”
Combust. Sci. Technol.
,
180
(
6
), pp.
1169
1192
.10.1080/00102200801963375
2.
Lewis
,
B.
, and
Von Elbe
,
G.
,
1943
, “
Stability and Structure of Burner Flames
,”
J. Chem. Phys.
,
11
(
2
), pp.
75
97
.10.1063/1.1723808
3.
Wohl
,
K.
,
1953
, “
Quenching, Flash-Back, Blow-Off-Theory and Experiment
,”
Sym. (Int.) Combust. (Proc.)
,
4
(
1
), pp.
68
89
.10.1016/S0082-0784(53)80011-1
4.
Putnam
,
A. A.
, and
Jensen
,
R. A.
,
1949
, “
Application of Dimensionless Numbers to Flash-Back and Other Combustion Phenomena
,”
Symposium on Combustion and Flame, and Explosion Phenomena
,
3
(
1
), pp.
89
98
.10.1016/S1062-2896(49)80011-0
5.
Grumer
,
J.
,
1949
, “
Predicting Burner Performance With Interchanged Fuel Gases
,”
Ind. Eng. Chem.
,
41
(
12
), pp.
2756
2761
.10.1021/ie50480a023
6.
Grumer
,
J.
, and
Harris
,
M. E.
,
1952
, “
Flame-Stability Limits of Methane, Hydrogen, and Carbon Monoxide Mixtures
,”
Ind. Eng. Chem.
,
44
(
7
), pp.
1547
1553
.10.1021/ie50511a023
7.
Grumer
,
J.
,
Harris
,
M. E.
, and
Schultz
,
H.
,
1952
, “
Predicting Interchangeability of Fuel Gases. Interchangeability of Oil Gases or Propane-Air Fuels With Natural Gases
,”
Ind. Eng. Chem.
,
44
(
7
), pp.
1554
1559
.10.1021/ie50511a024
8.
Grumer
,
J.
, and
Harris
,
M. E.
,
1954
, “
Temperature Dependence of Stability Limits of Burner Flames
,”
Ind. Eng. Chem.
,
46
(
11
), pp.
2424
2430
.10.1021/ie50539a057
9.
Grumer
,
J.
,
Harris
,
M. E.
, and
Schultz
,
H.
,
1955
, “
Flame Stability Limits of Ethylene, Propane, Methane, Hydrogen, and Nitrogen Mixtures
,”
Ind. Eng. Chem.
,
47
(
9
), pp.
1760
1767
.10.1021/ie50549a024
10.
Grumer
,
J.
,
Harris
,
M. E.
, and
Rowe
,
V.
,
1956
, “
Fundamental Flashback, Blow Off, and Yellow-Tip Limits of Fuel Gas-Air Mixtures
,” U.S. Dept. Interior, Bureau of Mines, Washington, D.C.
11.
Bollinger
,
L. E.
, and
Edse
,
R.
,
1956
, “
Effect of Burner-Tip Temperature on Flash Back of Turbulent Hydrogen-Oxygen Flames
,”
Ind. Eng. Chem.
,
48
(
4
), pp.
802
807
.10.1021/ie50556a040
12.
Fine
,
B.
,
1957
, “
Stability Limits and Burning Velocities for Some Laminar and Turbulent Propane and Hydrogen Flames at Reduced Pressure
,” NACA—Technical Note 4031, pp.
49
.
13.
Fine
,
B.
,
1958
, “
Flashback of Laminar and Turbulent Burner Flames at Reduced Pressure
,”
Combust. Flame
,
2
(
3
), pp.
253
266
.10.1016/0010-2180(58)90046-4
14.
Fine
,
B.
,
1959
, “
Effect of Initial Temperature on Flash Back of Laminar and Turbulent Burner Flames
,”
Indust. Eng. Chem.
,
51
(
4
), pp.
564
566
.10.1021/ie50592a044
15.
Van Krevelen
,
D. W.
, and
Chermin
,
H. A. G.
,
1958
, “
Generalized Flame Stability Diagram for the Prediction of Interchangeability of Gases
,”
Sym. (Int.) Combust. (Proc.)
,
7
(
1
), pp.
358
368
.10.1016/S0082-0784(58)80066-1
16.
Caffo
,
E.
, and
Padovani
,
C.
,
1963
, “
Flashback in Premixed Air Flames
,”
Combust. Flame
,
7
(
4
), pp.
331
337
.10.1016/0010-2180(63)90208-6
17.
Putnam
,
A. A.
,
Ball
,
D. A.
, and
Levy
,
A.
,
1980
, “
Effect of Fuel Composition on Relation of Burning Velocity to Product of Quenching Distance and Flashback Velocity Gradient
,”
Combust. Flame
,
37
, pp.
193
196
.10.1016/0010-2180(80)90085-1
18.
Ball
,
D. A.
,
Putnam
,
A. A.
,
Radhakrishman
,
E.
, and
Levy
,
A.
,
1978
, “
Relation of Burning Velocity, Quenching Distance, and Flashback Velocity Gradient for Low and Intermediate Btu Gases
,” Battelle Columbus Laboratories, Columbus, OH, Technical Report No. DOE/ET/10653-3.
19.
Lee
,
S. T.
, and
Tien
,
J. S.
,
1982
, “
A Numerical-Analysis of Flame Flashback in a Premixed Laminar System
,”
Combust. Flame
,
48
(
3
), pp.
273
285
.10.1016/0010-2180(82)90134-1
20.
Davu
,
D.
,
Franco
,
R.
,
Choudhuri
,
A.
, and
Lewis
,
R.
,
2005
, “
Investigation on Flashback Propensity of Syngas Premixed Flames
,” 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit,
Tucson, AZ
, July 10–July 13, Paper No. AIAA 2005–3585.
21.
Dam
,
B.
,
Love
,
N.
, and
Choudhuri
,
A.
,
2011
, “
Flashback Propensity of Syngas Fuels
,”
Fuel
,
90
(
2
), pp.
618
625
.10.1016/j.fuel.2010.10.021
22.
Xu
,
G.
,
Tian
,
Y.
,
Song
,
Q.
,
Fang
,
A.
,
Cui
,
Y.
,
Yu
,
B.
, and
Nie
,
C.
,
2006
, “
Flashback Limit and Mechanism of Methane and Syngas Fuel
,” ASME Turbo Expo 2006: Power for Land, Sea, and Air (GT2006),
Barcelona, Spain
, May 6–11,
ASME
Paper No. GT2006-90521, pp.
445
452
.10.1115/GT2006-90521
23.
Eichler
,
C.
,
Baumgartner
,
G.
, and
Sattelmayer
,
T.
,
2012
, “
Experimental Investigation of Turbulent Boundary Layer Flashback Limits for Premixed Hydrogen-Air Flames Confined in Ducts
,”
ASME J. Eng. Gas Turbines Power
,
134
(
1
), p.
011502
.10.1115/1.4004149
24.
Sequera
,
D.
, and
Agrawal
,
A.
,
2008
, “
Visual Flame Structure of Hydrogen-Rich Flames in a Low-Swirl Burner
,” 2008 Technical Meeting of the Central States Section of the Combustion Institute, Tuscaloosa, AL, April 20–22.
25.
Wang
,
Q.
,
McDonell
,
V.
,
Steinthorsson
,
E.
,
Mansour
,
A.
, and
Hollon
,
B.
,
2009
, “
Correlating Flashback Tendencies for Premixed Injection of Hydrogen and Methane Mixtures at Elevated Temperature and Pressure
,”
ASME
Paper No. GT2009-59500. pp. 401
410
.10.1115/GT2009-59500
26.
Grumer
,
J.
,
1958
, “
Flashback and Blow Off Limits of Unpiloted Turbulent Flames
,”
Jet Propul.
,
28
, pp.
756
.
27.
Yamazaki
,
K.
, and
Tsuji
,
H.
,
1961
, “
An Experimental Investigation on the Stability of Turbulent Burner Flames
,”
Symp. (Int.) Combust., (Proc.)
,
8
(
1
), pp.
543
553
.10.1016/S0082-0784(06)80545-X
28.
Khitrin
,
L. N.
,
Moin
,
P. B.
,
Smirnov
,
D. B.
, and
Shevchuk
,
V. U.
,
1965
, “
Peculiarities of Laminar- and Turbulent-Flame Flashbacks
,”
Symp. (Int.) Combust. (Proc.)
,
10
(
1
), pp.
1285
1291
.10.1016/S0082-0784(65)80263-6
29.
Schlichting
,
H.
, and
Gersten
,
K.
,
2000
,
Boundary-Layer Theory
,
Springer
,
Berlin
.
30.
Natarajan
,
J.
,
Lieuwen
,
T.
, and
Seitzman
,
J.
,
2007
, “
Laminar Flame Speeds of H2/CO Mixtures: Effect of CO2 Dilution, Preheat Temperature, and Pressure
,”
Combust. Flame
,
151
(
1-2
), pp.
104
119
. 10.1016/j.combustflame.2007.05.003
31.
Hu
,
E.
,
Huang
,
Z.
,
He
,
J.
,
Jin
,
C.
, and
Zheng
,
J.
,
2009
, “
Experimental and Numerical Study on Laminar Burning Characteristics of Premixed Methane-Hydrogen-Air Flames
,”
Int. J. Hydrogen Energy
,
34
(
11
), pp.
4876
4888
.10.1016/j.ijhydene.2009.03.058
You do not currently have access to this content.