The inlet fogging effects on the stable range of a NASA transonic compressor stage, Stage 35, are numerically simulated and analyzed in this paper. The 3D two-phase flow fields in the compressor stage are investigated under different operating flow conditions with varying levels of the injected water flow rates and the fogging droplets sizes. The special attention is given to the stall and the choking operating points to investigate changes in the stable operating range of the compressor stage as a result of different wet compression conditions. The preliminary results indicate that the inlet fogging has different effects on either the stall and/or the choking range. The change in the stable range of this transonic compressor stage depends on the fogging flow rate and droplets diameters.

References

1.
Hartel
,
C.
, and
Pfeiffer
,
P.
, 2003, “
Model Analysis of High-Fogging Effects on the Work of Compression
,” ASME Paper No. GT2003-38117.
2.
Horlock
,
J. H.
, 2001, “
Compressor Performance with Water Injection
,” ASME Paper No. 2001-GT-0343.
3.
Tawney
,
R.
,
Pearson
,
C.
, and
Brown
,
M.
, 2001, “
Options to Maximize Power Output for Merchant Plants in Combined Cycle Applications
,” ASME Paper No. 2001-GT-0409.
4.
Bhargava
,
R. K.
,
Meher-Homji
,
C. B.
,
Chaker
,
M. A.
,
Bianchi
,
M.
,
Melino
,
F.
,
Peretto
,
A.
, and
Ingistov
,
S.
, 2005, “
Gas Turbine Fogging Technology - A State-of-the-Art Review, Part I: Inlet Evaporative Fogging–Analytical and Experimental Aspects
,” ASME Paper No. GT2005-68336.
5.
Brun
,
K.
,
Gonzalez
,
L. E.
, and
Platt
,
J. P.
, 2008, “
Impact of Continuous Inlet Fogging and Overspray Operation on GE 5002 Gas Turbine Life and Performance
,” ASME Paper No. GT2008-50207.
6.
Bhargava
,
R. K.
,
Bianchi
,
M.
,
Melino
,
F.
,
Peretto
,
A.
, and
Spina
,
P. R.
, 2008, “
Influence of Compressor Performance Maps Shape on Wet Compression
,” ASME Paper No. GT2008-50761.
7.
Meher-Homji
,
C. B.
, and
Mee
,
T. R.
, III
, 2000, “
Inlet Fogging of Gas Turbine Engines, Part A: Theory, Psychrometrics, and Fog Generation
,” ASME Paper No. 2000-GT-307.
8.
Meher-Homji
,
C. B.
, and
Mee
,
T. R.
, III
, 2000, “
Inlet Fogging of Gas Turbine Engines, Part B: Practical Considerations, Control, and O&M Aspects
,” ASME Paper No. 2000-GT-308.
9.
Fabbrizzi
,
M.
,
Cerretelli
,
C.
,
Medico
,
F. D.
, and
D’Orazio
,
M.
, 2009, “
An Experimental Investigation of a Single Stage Wet Gas Centrifugal Compressor
,” ASME Paper No. GT2009-59548.
10.
Chaker
,
M.
,
Meher-Homji
,
C. B.
, and
Mee
,
T. R.
, III
, 2003, “
Inlet Fogging of Gas Turbine Engines-Experimental and Analytical Investigations on Impaction Pin Fog Nozzle Behavior
,” ASME Paper No. GT2003-38801.
11.
Ulrichs
,
E.
, and
Joos
,
F.
, 2006, “
Experimental Investigations of the Influence of Water Droplets in Compressor Cascades
,” ASME Paper No. GT2006-90411.
12.
Eisfeld
,
T.
, and
Joos
,
F.
, 2009, “
Experimental Investigation of Two-Phase Flow Phenomena in Transonic Compressor Cascades
,” ASME Paper No. GT2009-59365.
13.
Zheng
,
Q.
,
Sun
,
Y.
,
Li
,
S.
, and
Wang
,
Y.
, 2002, “
Thermodynamic Analysis of Wet Compression Process in the Compressor of Gas Turbine
,” ASME Paper No. GT-2002-30590.
14.
Sun
,
L.
,
Li
,
Y.
,
Zheng
,
Q.
, and
Bhargava
,
R.
, 2008, “
The Effects of Wet Compression on the Separated Flow in a Compressor Stage
,” ASME Paper No. GT2008-50920.
15.
Bhargava
,
R.
, and
Meher-Homji
,
C. B.
, 2002, “
Parametric Analysis of Existing Gas Turbines with Inlet Evaporative and Overspray Fogging
,” ASME Paper No. GT-2002-30560.
16.
Zheng
,
Q.
,
Li
,
M.
, and
Sun
,
Y.
, 2003, “
Thermodynamic Performance of Wet Compression and Regenerative (WCR) Gas Turbine
,” ASME Paper No. GT2003-38517.
17.
Sexton
,
W. R.
, and
Sexton
,
M. R.
, 2003, “
The Effects of Wet Compression on Gas Turbine Engine Operating Performance
,” ASME Paper No. GT2003-38045.
18.
Reid
,
L.
, and
Moore
,
R. D.
, 1978, “
Design and Overall Performance of Four Highly-Loaded, High-Speed Inlet Stages for an Advanced, High-Pressure-Ratio Core Compressor
,” NASA TP-1337.
19.
Reid
,
L.
, and
Moore
,
R. D.
, 1978, “
Performance of Single-Stage Axial-Flow Transonic Compressor With Rotor and Stator Aspect Ratios of 1.19 and 1.26, Respectively, and With Design Pressure Ratio of 1.82
,” NASA TP-1338.
20.
Poling
,
B. E.
,
Prausnitz
,
J. M.
, and
O’Connell
,
J. P.
, 2001,
The Properties of Gases and Liquids
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.