Gas turbine inlet fog/overspray cooling is considered as a simple and effective method to increase power output. To help understand the water mist transport in the compressor flow passage, this study conducts a 3D computational simulation of wet compression in a single rotor-stator compressor stage using the commercial code FLUENT. A sliding mesh scheme is used to simulate the stator-rotor interaction in a rotating frame. Eulerian–Lagrangian method is used to calculate the continuous phase and track the discrete (droplet) phase. Models to simulate droplet breakup and coalescence are incorporated to take into consideration the effect of local acceleration and deceleration on water droplet dynamics. Analysis on the droplet history (trajectory and size) with stochastic tracking is employed to interpret the mechanism of droplet dynamics under the influence of local turbulence, acceleration, diffusion, and body forces. A liquid-droplet erosion model is included. The sensitivity of the turbulence models on the results is conducted by employing six different turbulence models and four different time constants. The result shows that the local thermal equilibrium is not always achieved due to short residence time and high value of latent heat of water. Local pressure gradients in both the rotor and stator flow passages drive up the droplet slip velocity during compression. The erosion model predicts that the most eroded area occurs in the leading edge and one spot of the trailing edge of the rotor suction side.

1.
Cortes
,
C. R.
, and
Willems
,
D. E.
, 2003,
Gas Turbine Inlet Air Cooling Techniques: An Overview of Current Technologies
,
POWER-GEN
,
Las Vegas, NV
.
2.
Bhargava
,
R.
, and
Meher-Homji
,
C. B.
, 2005, “
Parametric Analysis of Existing Gas Turbines With Inlet Evaporative and Overspray Fogging
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
127
, pp.
145
158
.
3.
Chaker
,
M.
,
Meher-Homji
,
C. B.
, and
Mee
,
T. R.
, 2004, “
Inlet Fogging of Gas Turbine Engines—Part I: Fog Droplet Thermodynamics, Heat Transfer, and Practical Considerations
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
126
, pp.
545
558
.
4.
Chaker
,
M.
,
Meher-Homji
,
C. B.
, and
Mee
,
T. R.
, 2004, “
Inlet Fogging of Gas Turbine Engines—Part II: Fog Droplet Sizing Analysis, Nozzle Types, Measurement, and Testing
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
126
, pp.
559
570
.
5.
Chaker
,
M.
,
Meher-Homji
,
C. B.
, and
Mee
,
T. R.
, 2004, “
Inlet Fogging of Gas Turbine Engines—Part III: Fog Behavior in Inlet Ducts, Computational Fluid Dynamics Analysis, and Wind Tunnel Experiments
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
126
, pp.
571
580
.
6.
Payne
,
R. C.
, and
White
,
A. J.
, 2008, “
Three-Dimensional Calculations of Evaporative Flow in Compressor Blade Rows
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
130
, p.
032001
.
7.
Bianchi
,
M.
,
Melino
,
F.
,
Peretto
,
A.
,
Spina
,
P. R.
, and
Ingistov
,
S.
, 2007, “
Influence of Water Droplet Size and Temperature on Wet Compression
,”
ASME
Paper No. GT2007-27458.
8.
Khan
,
J. R.
, and
Wang
,
T.
, 2006, “
Fog and Overspray Cooling for Gas Turbine Systems With Low Calorific Value Fuels
,”
ASME
Paper No. GT2006-90396.
9.
Wang
,
T.
, and
Khan
,
J. R.
, 2008, “
Overspray and Interstage Fog Cooling in Compressor Using Stage-Stacking Scheme—Part 1: Development of Theory and Algorithm
,”
ASME
Paper No. GT2008-50322.
10.
Wang
,
T.
, and
Khan
,
J. R.
, 2008, “
Overspray and Interstage Fog Cooling in Compressor Using Stage-Stacking Scheme—Part 2: A Case Study
,”
ASME
Paper No. GT2008-50323.
11.
Khan
,
J. R.
, and
Wang
,
T.
, 2009, “
Overspray Fog Cooling in Compressor Using Stage-Stacking Scheme With Non-Equilibrium Heat Transfer Model for Droplet Evaporation
,”
ASME
Paper No. GT2009-59590.
12.
Li
,
X.
, and
Wang
,
T.
, 2007, “
Effects of Various Modelings on Mist Film Cooling
,”
ASME J. Heat Transfer
0022-1481,
129
, pp.
472
482
.
13.
Wang
,
T.
, and
Dhanasekaran
,
T. S.
, 2008, “
Calibration of CFD Model for Mist/Steam Impinging Jets Cooling
,”
ASME
Paper No. GT2008-50737.
14.
Zheng
,
Q.
,
Shao
,
Y.
, and
Zhang
,
Y.
, 2006, “
Numerical Simulation of Aerodynamic Performances of Wet Compression Compressor Cascade
,”
ASME
Paper No. GT2006-91125.
15.
Khan
,
J. R.
, and
Wang
,
T.
, 2008, “
Simulation of Inlet Fogging and Wet-Compression in a Single Stage Compressor Including Erosion Analysis
,”
ASME
Paper No. GT2008-50874.
16.
Hsu
,
S. T.
, and
Wo
,
A. M.
, 1998, “
Reduction of Unsteady Blade Loading by Beneficial Use of Vortical and Potential Disturbances in an Axial Compressor With Rotor Clocking
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
705
713
.
17.
Chima
,
R. V.
, 1998, “
Calculation of Tip Clearance Effects in a Transonic Compressor Rotor
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
131
140
.
18.
Gerolymos
,
G. A.
, and
Vallet
,
I.
, 1999, “
Tip-Clearance and Secondary Flows in a Transonic Compressor Rotor
,”
ASME J. Turbomach.
0889-504X,
121
, pp.
751
762
.
19.
Launder
,
B. E.
, and
Spalding
,
D. B.
, 1972,
Lectures in Mathematical Models of Turbulence
,
Academic
,
London, England
.
20.
Wolfshtein
,
M.
, 1969, “
The Velocity and Temperature Distribution of One-Dimensional Flow With Turbulence Augmentation and Pressure Gradient
,”
Int. J. Heat Mass Transfer
0017-9310,
12
, pp.
301
318
.
21.
Wang
,
S.
,
Liu
,
G.
,
Mao
,
J.
, and
Feng
,
Z.
, 2007, “
Experimental Investigation on the Solid Particle Erosion in the Control Stage Nozzles of Steam Turbine
,”
ASME
Paper No. GT2007-27700.
22.
Schiller
,
L.
, and
Naumann
,
A.
, 1933, “
Uber die grundlegenden Berechnungen bei der Schwekraftaubereitung
,”
Z. Ver. Dtsch. Ing.
0341-7255,
77
(
12
), pp.
318
320
.
23.
Ranz
,
W. E.
, and
Marshall
,
W. R.
, Jr.
, 1952, “
Evaporation From Drops, Part I
,”
Chem. Eng. Prog.
0360-7275,
48
, pp.
141
146
.
24.
Ranz
,
W. E.
, and
Marshall
,
W. R.
, Jr.
, 1952, “
Evaporation From Drops, Part II
,”
Chem. Eng. Prog.
0360-7275,
48
, pp.
173
180
.
25.
Kuo
,
K. Y.
, 1986,
Principles of Combustion
,
Wiley
,
New York
.
26.
O’Rourke
,
P. J.
, and
Amsden
,
A. A.
, 1987, “
The Tab Method for Numerical Calculation of Spray Droplet Breakup
,” SAE Technical Paper No. 872089.
27.
O’Rourke
,
P. J.
, 1981, “
Collective Drop Effects on Vaporizing Liquid Sprays
,” Ph.D. thesis, Princeton University, NJ.
28.
Lam
,
T. C.-T.
, and
Dewey
,
R.
, 2003, “
A Study of Droplet Erosion on Two L-0 Turbine Stages
,”
Proceedings of the IJPGC 2003
, Atlanta, GA, Jun. 16–19, Paper No. IJPGC2003-40082.
29.
Haugen
,
K.
,
Kvernvold
,
O.
,
Ronold
,
A.
, and
Sandberg
,
R.
, 1995, “
Sand Erosion of Wear-Resistant Materials: Erosion in Choke Valves
,”
Wear
0043-1648,
186–187
, pp.
179
188
.
30.
Nøkleberg
,
L.
, and
Sontvedt
,
T.
, 1998, “
Erosion of Oil and Gas Industry Choke Valves Using Computational Fluid Dynamics and Experiment
,”
Int. J. Heat Fluid Flow
0142-727X,
19
, pp.
636
643
.
31.
Bowden
,
F. P.
, and
Field
,
J. E.
, 1964, “
The Brittle Fracture of Solids by Liquid Impact, by Solid Impact, and by Shock
,”
Proc. R. Soc. London, Ser. A
0950-1207,
282
, pp.
331
352
.
32.
Keating
,
A.
, and
Nesic
,
S.
, 1999, “
Prediction of Two-Phase Erosion-Corrosion in Bends
,”
Proceedings of the Second International Conference on CFD in the Minerals and Process Industries, CSIRO
, Melbourne, Australia, Dec. 6–8, pp.
229
–236.
33.
Bitter
,
P. P. A.
, 1963, “
A Study of Erosion Phenomena, Part I
,”
Wear
0043-1648,
6
(
1
), pp.
5
21
.
34.
Bitter
,
P. P. A.
, 1963, “
A Study of Erosion Phenomena, Part II
,”
Wear
0043-1648,
6
(
3
), pp.
169
190
.
35.
Guo
,
T.
,
Wang
,
T.
, and
Gaddis
,
J. L.
, 2000, “
Mist/Steam Cooling in a Heated Horizontal Tube—Part 2: Results and Modeling
,”
Trans. ASME
0097-6822,
122
, pp.
366
374
.
36.
Fluent, Inc.
, 2008, FLUENT Manual, Version 6.3, Ansys Inc., Canonsburg, PA.
You do not currently have access to this content.