In this paper, the results of numerical simulation on the performance of a sudden expansion with fence viewed as a diffuser are presented. The two-dimensional steady differential equations for conservation of mass and momentum have been solved using the semi-implicit method for pressure-linked equations (SIMPLE) algorithm. The Reynolds number is in the range of 20–100 and fence subtended angle (FSA) between 10 deg and 30 deg. An aspect ratio of 2 is fixed for all the computations. The effect of each variable on average static pressure and diffuser effectiveness has been studied. Computations have revealed that for higher Reynolds number, the use of a fence always increases the effectiveness of the diffusion process when compared with a simple sudden expansion configuration. In low Reynolds number regime, depending on the positioning of the fence and the fence subtended angle, the fence may increase or decrease the diffuser effectiveness in comparison with sudden expansion without fence.

1.
Abbot
,
D. E.
, and
Kline
,
S. J.
, 1962, “
Experimental Investigation of Subsonic Turbulent Flow Over Single and Double Backward Facing Steps
,”
ASME J. Basic Eng.
0021-9223,
84
, pp.
317
325
.
2.
Macagno
,
E. O.
, and
Hung
,
T. K.
, 1967, “
Computational and Experimental Study of a Captive Annular Eddy
,”
J. Fluid Mech.
0022-1120,
28
(
1
), pp.
43
64
.
3.
Durst
,
F.
,
Melling
,
A.
, and
Whitelaw
,
J. H.
, 1974, “
Low Reynolds Number Flow Over a Plane Symmetric Sudden Expansion
,”
J. Fluid Mech.
0022-1120,
64
(
1
), pp.
111
128
.
4.
Fearn
,
R. M.
,
Mullin
,
T.
, and
Cliffe
,
K. A.
, 1990, “
Nonlinear Flow Phenomena in a Symmetric Sudden Expansion
,”
J. Fluid Mech.
0022-1120,
211
, pp.
595
608
.
5.
Drikakis
,
D.
, 1997, “
Bifurcation Phenomena in Incompressible Sudden Expansion Flows
,”
Phys. Fluids
1070-6631,
9
, pp.
76
87
.
6.
Mizushima
,
J.
, and
Shiotani
,
Y.
, 2000, “
Structural Instability of the Bifurcation Diagram for Two-Dimensional Flow in a Channel With a Sudden Expansion
,”
J. Fluid Mech.
0022-1120,
420
, pp.
131
145
.
7.
Hawa
,
T.
, and
Ruzak
,
Z.
, 2001, “
The Dynamics of a Laminar Flow in a Symmetric Channel With Sudden Expansion
,”
J. Fluid Mech.
0022-1120,
436
, pp.
283
320
.
8.
Chakrabarti
,
S.
,
Ray
,
S.
, and
Sarkar
,
A.
, 2003, “
Low Reynolds Number Flow Through Sudden Expansion—From a Diffuser Viewpoint
,”
J. Energy Heat Mass Transfer
,
25
, pp.
46
66
.
9.
Adkins
,
R. C.
, 1975, “
A Short Diffuser With Low Pressure Loss
,”
ASME J. Fluids Eng.
0098-2202,
93
, pp.
297
302
.
10.
Raghunathan
,
S.
, and
Cooper
,
R. K.
, 2000, “
Passive Boundary Layer Control With Slots in Short Diffusers
,”
ASME J. Fluids Eng.
0098-2202,
122
, pp.
177
179
.
11.
Chakrabarti
,
S.
,
Ray
,
S.
, and
Sarkar
,
A.
, 2002, “
Numerical Simulation of the Performance of a Vortex Controlled Diffuser in Low Reynolds Number Regime
,”
Int. J. Numer. Methods Heat Fluid Flow
0961-5539,
12
, pp.
224
240
.
12.
Walker
,
A. D.
,
Denman
,
P. A.
, and
McGuirk
,
J. J.
, 2004, “
Experimental and Computational Study of Hybrid Diffusers for Gas Turbine Combustors
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
126
, pp.
717
725
.
13.
Sullery
,
R. K.
, and
Pradeep
,
A. M.
, 2004, “
Secondary Flow Control Using Vortex Generator Jets
,”
Trans. ASME
0097-6822,
126
, pp.
650
657
.
14.
Chakrabarti
,
S.
,
Ray
,
S.
, and
Sarkar
,
A.
, 2008, “
Numerical Analysis for Sudden Expansion With Fence in Low Reynolds Number Regime
,”
J. Energy Heat Mass Transfer
,
30
, pp.
131
148
.
15.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
Washington, DC
.
You do not currently have access to this content.