Abstract

Comprehensive modeling of gas foil bearings (GFBs) anchored to reliable test data will enable the widespread usage of these bearings into novel high speed turbomachinery applications. GFBs often need a forced cooling gas flow, axially fed through one end of the bearing, for adequate thermal management. This paper presents rotordynamic response measurements on a rigid rotor supported on GFBs during rotor speed run-up and coastdown tests with the GFBs supplied with increasing feed gas pressures to 2.8bars. Rotor speed run-up tests to 35krpm show that the bearing end side feed gas pressurization delays the onset speed of rotor subsynchronous whirl motions. The test data validate closely the predictions of the threshold speed of instability and the whirl frequency ratio derived from a GFB model that implements the axial evolution of gas circumferential flow velocity as a function of the imposed side feed pressure. Rotor speed coastdown tests from 25krpm with a low feed pressure of 0.35bar evidence a nearly linear synchronous rotor response for small and moderately large imbalance mass distributions. A structural finite element rotordynamics model integrates linearized synchronous speed GFB force coefficients and predicts synchronous responses, amplitude, and phase angles, agreeing with the test data. The analysis and measurements demonstrate the profound effect of the end side feed gas pressurization on the rotordynamic performance of GFBs.

1.
DellaCorte
,
C.
, and
Valco
,
M. J.
, 2000, “
Load Capacity Estimation of Foil Air Journal Bearings for Oil-Free Turbomachinery Applications
,”
STLE Tribol. Trans.
1040-2004,
43
(
4
), pp.
795
801
.
2.
Heshmat
,
H.
, 1994, “
Advancements in the Performance of Aerodynamic Foil Journal Bearings: High Speed and Load Capacity
,”
ASME J. Tribol.
0742-4787,
116
, pp
287
295
.
3.
Peng
,
J.-P.
, and
Carpino
,
M.
, 1994, “
Coulomb Friction Damping Effects in Elastically Supported Gas Foil Bearings
,”
STLE Tribol. Trans.
1040-2004,
37
(
1
), pp.
91
98
.
4.
Howard
,
S.
,
DellaCorte
,
C.
,
Valco
,
M.-J.
,
Prahl
,
J.-M.
, and
Heshmat
,
H.
, 2001, “
Dynamic Stiffness and Damping Characteristics of a High-Temperature Air Foil Journal Bearing
,”
STLE Tribol. Trans.
1040-2004,
44
(
4
), pp.
657
663
.
5.
Chen
,
H. M.
,
Howarth
,
R.
,
Geren
,
B.
,
Theilacker
,
J. C.
, and
Soyars
,
W. M.
, 2000, “
Application of Foil Bearings to Helium Turbocompressor
,”
Proceedings of the 30th Turbomachinery Symposium
,
Houston, TX
, Sep. 17–20, pp.
103
113
.
6.
DellaCorte
,
C.
,
Radil
,
K.
,
Bruckner
,
R.
, and
Howard
,
S.
, 2007, “
Design, Fabrication and Performance of Open Source Generation I and II Compliant Hydrodynamic Gas Foil Bearings
,” NASA/TM-2007-214691.
7.
Radil
,
K.
,
DellaCorte
,
C.
,
Bruckner
,
R.
, and
Zessoteck
,
M.
, 2007, “
Thermal Management Techniques for Oil-Free Turbomachinery Systems
,”
STLE Tribol. Trans.
1040-2004,
50
, pp.
319
327
.
8.
Bauman
,
S.
, 2005, “
An Oil-Free Thrust Foil Bearing Facility Design Calibration, and Operation
,” NASA/TM-2005-213568.
9.
Heshmat
,
H.
,
Tomaszewski
,
M. J.
, and
Walton
,
J. F.
, 2006, “
Small Gas Turbine Engine Operating With High-Temperature Foil Bearings
,” ASME Paper No. GT2006-90791.
10.
Rubio
,
D.
, and
San Andrés
,
L.
, 2006, “
Bump-Type Foil Bearing Structural Stiffness: Experiments and Predictions
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
128
, pp.
653
660
.
11.
Rubio
,
D.
, and
San Andrés
,
L.
, 2007, “
Structural Stiffness, Dry Friction Coefficient, and Equivalent Viscous Damping in a Bump-Type Foil Gas Bearing
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
129
, pp.
494
502
.
12.
Kim
,
T. H.
,
Breedlove
,
A. W.
, and
San Andrés
,
L.
, 2008, “
Characterization of Foil Bearing Structure for Increasing Shaft Temperatures: Part I—Static Load Performance
,” ASME Paper No. GT2008-50567.
13.
Kim
,
T. H.
,
Breedlove
,
A. W.
, and
San Andrés
,
L.
, 2008, “
Characterization of Foil Bearing Structure for Increasing Shaft Temperatures: Part II—Dynamic Force Performance
,” ASME Paper No. GT2008-50570.
14.
San Andrés
,
L.
,
Rubio
,
D.
, and
Kim
,
T. H.
, 2007, “
Rotordynamic Performance of a Rotor Supported on Bump Type Foil Gas Bearings: Experiments and Predictions
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
129
(
3
), pp.
850
857
.
15.
Kim
,
T. H.
, 2007, “
Analysis of Side End Pressurized Bump Type Gas Foil Bearings: A Model Anchored to Test Data
,” Ph.D. thesis, Texas A&M University, College Station.
16.
Kim
,
T. H.
, and
San Andrés
,
L.
, 2005, “
Heavily Loaded Gas Foil Bearings: A Model Anchored to Test Data
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
130
, p.
0125041
.
17.
San Andrés
,
L.
, and
Kim
,
T. H.
, 2007, “
Improvements to the Analysis of Gas Foil Bearings: Integration of Top Foil 1D and 2D Structural Models
,” ASME Paper No. GT2007-27249.
18.
Ruscitto
,
D.
,
McCormick
,
J.
, and
Gray
,
S.
, 1978, “
Hydrodynamic Air Lubricated Compliant Surface Bearing for an Automotive Gas Turbine Engine I-Journal Bearing Performance
,” NASA CR-135368.
19.
San Andrés
,
L.
, and
Kim
,
T. H.
, 2008, “
Forced Nonlinear Response of Gas Foil Bearing Supported Rotors
,”
Tribol. Int.
0301-679X,
41
(
8
), pp.
704
715
.
20.
Kim
,
T.-H.
,
Lee
,
Y.-B.
,
Kim
,
C.-H.
, and
Lee
,
N.-S.
, 2003, “
A Study on the Reliability of an Air Foil Journal Bearing for High Speed Turbomachinery
,”
J. Fluid Machinery (Korean Fluid Machinery Association)
,
6
(
2
), pp.
7
14
.
21.
Black
,
H. F.
,
Allaire
,
P. E.
, and
Barrett
,
L. E.
, 1981, “
Inlet Flow Swirl in Short Turbulent Annular Seal Dynamics
,”
Proceedings of the Ninth International Conference in Fluid Sealing
, BHRA Fluid Engineering, Leeuwenborst, The Netherlands, Apr. 1–3, pp.
141
152
.
22.
Childs
,
D.
, 1993,
Turbomachinery Rotordynamics
,
Wiley
,
New York
, Chap. 5.
23.
Lund
,
J. W.
, 1968, “
Calculation of Stiffness and Damping Properties of Gas Bearings
,”
ASME J. Lubr. Technol.
0022-2305,
90
, pp.
793
803
.
24.
Ginsberg
,
J. H.
, 2001,
Mechanical and Structural Vibration—Theory and Application
,
Wiley
,
New York
, pp.
135
139
.
You do not currently have access to this content.