As part of an ongoing effort to develop a microscale gas turbine engine for power generation and micropropulsion applications, this paper presents the design, modeling, and experimental assessment of a catalytic combustion system. Previous work has indicated that homogenous gas-phase microcombustors are severely limited by chemical reaction timescales. Storable hydrocarbon fuels, such as propane, have been shown to blow out well below the desired mass flow rate per unit volume. Heterogeneous catalytic combustion has been identified as a possible improvement. Surface catalysis can increase hydrocarbon-air reaction rates, improve ignition characteristics, and broaden stability limits. Several radial inflow combustors were micromachined from silicon wafers using deep reactive ion etching and aligned fusion wafer bonding. The 191mm3 combustion chambers were filled with platinum-coated foam materials of various porosity and surface area. For near stoichiometric propane-air mixtures, exit gas temperatures of 1100K were achieved at mass flow rates in excess of 0.35gs. This corresponds to a power density of 1200MWm3; an 8.5-fold increase over the maximum power density achieved for gas-phase propane-air combustion in a similar geometry. Low-order models, including time-scale analyses and a one-dimensional steady-state plug-flow reactor model, were developed to elucidate the underlying physics and to identify important design parameters. High power density catalytic microcombustors were found to be limited by the diffusion of fuel species to the active surface, while substrate porosity and surface area-to-volume ratio were the dominant design variables.

1.
Epstein
,
A. H.
,
Senturia
,
S. D.
,
Al-Midani
,
O.
,
Anathasuresh
,
G.
,
Ayon
,
A. A.
,
Breuer
,
K.
,
Chen
,
K.-S.
,
Ehrich
,
F. F.
,
Esteve
,
E.
,
Frechette
,
L.
,
Gauba
,
G.
,
Ghodssi
,
R.
,
Groshenry
,
C.
,
Jacobsen
,
S. A.
,
Kerrebrock
,
J. L.
,
Lang
,
J. H.
,
Lin
,
C-C.
,
London
,
A. P.
,
Lopata
,
J.
,
Mehra
,
A.
,
Mur Mirandi
,
J. O.
,
Nagle
,
S.
,
Orr
,
D. J.
,
Piekos
,
E.
,
Schmidt
,
M. A.
,
Shirley
,
G.
,
Spearing
,
S. M.
,
Tan
,
C. S.
,
Tzeng
,
Y-S.
, and
Waitz
,
I. A.
, 1997, “
Micro-Heat Engines, Gas Turbines, and Rocket Engines
,” 28th AIAA Fluid Dynamics Conference.
2.
Groshenry
,
C.
, 1995, “
Preliminary Study of a Micro-Gas Turbine Engine
,” S.M. thesis, Massachusetts Institute of Technology, Cambridge, MA.
3.
Mehra
,
A.
, 2000, “
Development of a High Power Density Combustion System for a Silicon Micro Gas Turbine Engine
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
4.
Mehra
,
A.
,
Zhang
,
X.
,
Ayon
,
A. A.
,
Waitz
,
I. A.
,
Schmidt
,
M. A.
, and
Spadaccini
,
C. M.
, 2000, “
A 6-Wafer Combustion System for a Silicon Micro Gas Turbine Engine
,”
J. Microelectromech. Syst.
1057-7157,
9
, pp.
517
527
.
5.
Spadaccini
,
C. M.
,
Mehra
,
A.
,
Lee
,
J.
,
Zhang
,
X.
,
Lukachko
,
S.
, and
Waitz
,
I. A.
, 2003, “
High Power Density Silicon Combustion Systems for Micro Gas Turbine Engines
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
125
, pp.
709
719
.
6.
Waitz
,
I. A.
,
Gauba
,
G.
, and
Tzeng
,
Y-S.
, 1998, “
Combustors for Micro Gas Turbine Engines
,”
ASME J. Fluids Eng.
0098-2202,
20
, pp.
109
117
.
7.
Hayes
,
R. E.
, and
Kolaczkowski
,
S. T.
, 1997,
Introduction to Catalytic Combustion
,
Gordon and Breach
, Canada.
8.
Mehra
,
A.
, and
Waitz
,
I. A.
, 1998, “
Development of a Hydrogen Combustor for a Microfabricated Gas Turbine Engine
,” Solid-State Sensor and Actuator Workshop at Hilton Head.
9.
Spadaccini
,
C. M.
, 2004, “
Combustion Systems for Power-MEMS Applications
,” Ph.D. thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA.
10.
Fernandez-Pello
,
A. C.
,
Pisano
,
A. P.
,
Fu
,
K.
,
Walther
,
D.
,
Knobloch
,
A.
,
Martinez
,
F.
,
Senesky
,
M.
,
Jones
,
D.
,
Stoldt
,
C.
, and
Heppner
,
J.
, 2002, “
MEMS Rotary Engine Power System
,”
Power MEMS 2002: International Workshop on Power MEMS
, Tsukuba, Japan,
Tech. Dig. - Int. Electron Devices Meet.
0163-1918, pp.
28
31
.
11.
Arana
,
L. R.
, 2003, “
High-Temperature Microfluidic Systems for Thermally-Efficient Fuel Processing
,” Ph.D. thesis, Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA.
12.
Schaevitz
,
S. B.
, 2000, “
A MEMS Thermoelectric Generator
,” S.M. thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA.
13.
Maruta
,
K.
,
Takeda
,
K.
,
Sitzki
,
L.
,
Borer
,
K.
,
Ronney
,
P. D.
,
Wussow
,
S.
, and
Deutschmann
, 2001, “
Catalytic Combustion in Microchannels for MEMS Power Generation
,” The Third Asia-Pacific Conference on Combustion, Seoul, June.
14.
Hatfield
,
J. M.
, and
Peterson
,
R. B.
, 2001, “
A Catalytically Sustained Microcombustor Burning Propane
,” 2001 IMECE, ASME, New York, November.
15.
Spadaccini
,
C. M.
,
Zhang
,
X.
,
Cadou
,
C. P.
,
Miki
,
N.
, and
Waitz
,
I. A.
, 2003, “
Preliminary Development of a Hydrocarbon-Fueled Catalytic Micro-combustor
,”
Sens. Actuators, A
0924-4247,
103
, pp.
219
224
.
16.
Ionic Fusion Corporation, 2003, corporate literature, Longmont, CO.
17.
Harrison
,
T.
, 2000, “
Packaging of the MIT Microengine
,” S.M. thesis, Massachusetts Institute of Technology, Cambridge, MA.
18.
London
,
A. P.
, 2000, “
Development and Test of a Microfabricated Bipropellant Rocket Engine
,” Ph.D. thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA.
19.
Peck
,
J.
, 2003, “
Development of a Catalytic Combustion System for the MIT Micro Gas Turbine Engine
,” S.M. thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA.
20.
Williams
,
W. R.
,
Stenzel
,
M. T.
,
Song
,
X.
, and
Schmidt
,
L. D.
, 1991, “
Bifurcation Behavior in Homogeneous-Heterogeneous Combustion: I. Experimental Results Over Platinum
,”
Combust. Flame
0010-2180,
84
, pp.
277
291
.
21.
Goralski
,
C. T.
, Jr.
, and
Schmidt
,
L. D.
, 1996, “
Lean Catalytic Combustion of Alkanes at Short Contact Times
,”
Catal. Lett.
1011-372X,
42
, pp.
15
20
.
22.
Dalla Betta
,
R. A.
,
Schlatter
,
J. C.
,
Yee
,
D. K.
,
Loffler
,
D. G.
, and
Shoji
,
T.
, 1995, “
Catalytic Combustion Technology to Achieve Ultra Low NOx Emissions: Catalyst Design and Performance Characteristics
,”
Catal. Today
0920-5861,
26
, pp.
329
335
.
23.
Dalla Betta
,
R. A.
,
Schlatter
,
J. C.
,
Nickolas
,
S. G.
,
Razdan
, and
Smith
,
D. A.
, 1995, “
Application of Catalytic Combustion Technology to Industrial Gas Turbines for Ultra-Low NOx Emissions
,” ASME Paper No. 95-GT-65.
You do not currently have access to this content.