Abstract

The current work introduces a new device for effective flow control and ice removal applications based on the combination of a nonthermal plasma discharge with the excitation of an electro-active polymer membrane. This new device designated electro-active polymer (EAP) plasma actuator is particularly interesting for aeronautic and wind power applications since it allows to perform simultaneous flow control and ice removal operations. To prove the concept, in the current work, an electro-active polymer-based plasma actuator device is fabricated and experimentally tested. For the initial tests a “VHB 4910” from 3 M was used as dielectric layer and electrically conductive grease was utilized to fabricate the flexible electrodes. The results demonstrate that this new concept is feasible, and the EAP plasma actuator is able to elongate up to 80% for an applied voltage of 7 kV. In addition, it is proved it can generate induced flow velocities above 2 m/s and, simultaneously, it is able to increase the surface temperature above 100 °C. In comparison to conventional plasma actuator, the new EAP actuator brings several other advantages mainly for de-icing purposes since the electro-active polymer movement will difficult the ice adhesion and help to expel the ice from the surface.

References

1.
Guoqiang
,
L.
,
Weiguo
,
Z.
,
Yubiao
,
J.
, and
Pengyu
,
Y.
,
2019
, “
Experimental Investigation of Dynamic Stall Flow Control for Wind Turbine Airfoils Using a Plasma Actuator
,”
Energy
,
185
, pp.
90
101
.10.1016/j.energy.2019.07.017
2.
Rodrigues
,
F. F.
, and
Pascoa
,
J. C.
,
2020
, “
Implementation of Stair-Shaped Dielectric Layers in micro- And Macroplasma Actuators for Increased Efficiency and Lifetime
,”
ASME J. Fluids Eng.
,
142
(
10
), p.
104502
.10.1115/1.4047800
3.
Khanjari
,
H.
,
Varacalli
,
M.
, and
Hanson
,
R. E.
,
2023
, “
Streamwise Extent and Ramp Rate Effects on Laminar Boundary Layer Response to Plasma Actuator Vortex Generators
,”
ASME J. Fluids Eng.
,
145
(
6
), p.
061101
.10.1115/1.4057017
4.
Pereira Gouveia da Silva
,
G.
,
Eguea
,
J. P.
,
Garcia Croce
,
J. A.
, and
Martini Catalano
,
F.
,
2020
, “
Slat Aerodynamic Noise Reduction Using Dielectric Barrier Discharge Plasma Actuators
,”
Aerosp Sci Technol
,
97
, p.
105642
.10.1016/j.ast.2019.105642
5.
Yousif
,
M. Z.
,
Yang
,
Y.
,
Zhou
,
H.
,
Mohammadikarachi
,
A.
,
Yu
,
L.
,
Zhang
,
M.
, and
Lim
,
H. C.
,
2024
, “
Flow Control Over a Finite Wall-Mounted Square Cylinder by Using Multiple Plasma Actuators
,”
ASME J. Fluids Eng.
,
146
(
6
), p.
061301
.10.1115/1.4064387
6.
Shan
,
H.
, and
Lee
,
Y. T.
,
2016
, “
Numerical Modeling of Dielectric Barrier Discharge Plasma Actuation
,”
ASME J. Fluids Eng.
,
138
(
5
) p.
051104
.10.1115/1.4031880
7.
He
,
C.
,
Corke
,
T. C.
, and
Patel
,
M. P.
,
2009
, “
Plasma Flaps and Slats: An Application of Weakly Ionized Plasma Actuators
,”
J. Aircr.
,
46
(
3
), pp.
864
873
.10.2514/1.38232
8.
Pendar
,
M. R.
, and
Páscoa
,
J. C.
,
2022
, “
Numerical Investigation of Plasma Actuator Effects on Flow Control Over a Three-Dimensional Airfoil With a Sinusoidal Leading Edge
,”
ASME J. Fluid Eng.
,
144
(
8
), p.
081208
.10.1115/1.4053847
9.
Rodrigues
,
F.
,
Páscoa
,
J. C.
,
Dias
,
F.
, and
Abdollahzadeh
,
M.
,
2016
, “
Plasma Actuators for Boundary Layer Control of Next Generation Nozzles
,”
ASME
Paper No. IMECE2015-52193.10.1115/IMECE2015-52193
10.
Li
,
Y.
,
Zhang
,
X.
, and
Huang
,
X.
,
2010
, “
The Use of Plasma Actuators for Bluff Body Broadband Noise Control
,”
Exp. Fluids
,
49
(
2
), pp.
367
377
.10.1007/s00348-009-0806-3
11.
Huang
,
X.
, and
Zhang
,
X.
,
2010
, “
Plasma Actuators for Noise Control
,”
Int. J. Aeroacoustics
,
9
(
4–5
), pp.
679
703
.10.1260/1475-472X.9.4-5.679
12.
Yokoyama
,
H.
,
Nagao
,
N.
,
Tokai
,
K.
, and
Nishikawara
,
M.
,
2025
, “
Control of Flow and Acoustic Fields Around an Axial Fan Utilizing Plasma Actuators
,”
ASME J. Fluid Eng.
,
147
(
1
), p.
011201
.10.1115/1.4066112
13.
Benmoussa
,
A.
, and
Páscoa
,
J. C.
,
2021
, “
Performance Improvement and Start-Up Characteristics of a Cyclorotor Using Multiple Plasma Actuators
,”
Meccanica
,
56
(
11
), pp.
2707
2730
.10.1007/s11012-021-01413-4
14.
Benmoussa
,
A.
,
Rodrigues
,
F. F.
, and
Páscoa
,
J. C.
,
2023
, “
Plasma Actuators for Cycloidal Rotor Thrust Vectoring Enhancement in Airships
,”
Actuators
,
12
(
12
), p.
436
.10.3390/act12120436
15.
Yu
,
J.
,
Wang
,
Z.
,
Chen
,
F.
,
Yan
,
G.
, and
Wang
,
C.
,
2018
, “
Large Eddy Simulation of the Elliptic Jets in Film Cooling Controlled by Dielectric Barrier Discharge Plasma Actuators With an Improved Model
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
140
(
12
), p.
122001
.10.1115/1.4041186
16.
Li
,
G.
,
Wang
,
Q.
,
Huang
,
Y.
, and
Zhang
,
H.
,
2021
, “
Large Eddy Simulation of Film Cooling Effectiveness on a Turbine Vane Pressure Side With a Saw-Tooth Plasma Actuator
,”
Aerosp. Sci. Technol.
,
112
, p.
106615
.10.1016/j.ast.2021.106615
17.
Michelis
,
T.
, and
Kotsonis
,
M.
,
2015
, “
Flow Control on a Transport Truck Side Mirror Using Plasma Actuators
,”
ASME J. Fluids Eng.
,
137
(
11
), p.
111103
.10.1115/1.4030724
18.
D'Adamo
,
J.
,
Sosa
,
R.
, and
Artana
,
G.
,
2014
, “
Active Control of a Backward Facing Step Flow With Plasma Actuators
,”
ASME J. Fluid Eng.
,
136
(
12
), p.
121105
.10.1115/1.4027598
19.
Zare Chavoshi
,
M.
, and
Ebrahimi
,
A.
,
2022
, “
Plasma Actuator Effects on the Flow Physics of Dynamic Stall for a Vertical Axis Wind Turbine
,”
Phys. Fluids
,
34
(
7
), p.
075131
.10.1063/5.0099993
20.
Moreira
,
M.
,
Rodrigues
,
F.
,
Cândido
,
S.
,
Santos
,
G.
, and
Páscoa
,
J.
,
2023
, “
Development of a Background-Oriented Schlieren (BOS) System for Thermal Characterization of Flow Induced by Plasma Actuators
,”
Energies 2023
,
16
(
1
), p.
540
.10.3390/en16010540
21.
Shvydyuk
,
K. O.
,
Rodrigues
,
F. F.
,
Nunes-Pereira
,
J.
,
Páscoa
,
J. C.
,
Lanceros-Mendez
,
S.
, and
Silva
,
A. P.
,
2023
, “
Long-Lasting Ceramic Composites for Surface Dielectric Barrier Discharge Plasma Actuators
,”
J. Eur. Ceram. Soc.
,
43
(
14
), pp.
6112
6121
.10.1016/j.jeurceramsoc.2023.05.040
22.
Rodrigues
,
F.
,
Abdollahzadehsangroudi
,
M.
,
Nunes-Pereira
,
J.
, and
Páscoa
,
J.
,
2022
, “
Recent Developments on Dielectric Barrier Discharge (DBD) Plasma Actuators for Icing Mitigation
,”
Actuators
,
12
(
1
), p.
5
.10.3390/act12010005
23.
Zhang
,
Z.
,
A
,
L.
,
Hu
,
H.
,
Bai
,
X.
, and
Hu
,
H.
,
2021
, “
An Experimental Study on the Detrimental Effects of Deicing Fluids on the Performance of Icephobic Coatings for Aircraft Icing Mitigation
,”
Aerosp. Sci. Technol.
,
119
, p.
107090
.10.1016/j.ast.2021.107090
24.
Petty
,
K. R.
, and
Floyd
,
C. D. J.
,
2004
, “
A Statistical Review of Aviation Airframe Icing Accidents in the U.S
,”
11th Conference on Aviation, Range, and Aerospace
, Hyannis, MA, Oct. 4–8, pp.
1
6
.
25.
Hu
,
T.
,
Lv
,
H.
,
Tian
,
B.
, and
Su
,
D.
,
2014
, “
Choosing Critical Ice Shapes on Airfoil Surface for the Icing Certification of Aircraft
,”
Procedia Eng.
,
80
, pp.
456
466
.10.1016/j.proeng.2014.09.104
26.
Parent
,
O.
, and
Ilinca
,
A.
,
2011
, “
Anti-Icing and de-Icing Techniques for Wind Turbines: Critical Review
,”
Cold Reg. Sci. Technol.
,
65
(
1
), pp.
88
96
.10.1016/j.coldregions.2010.01.005
27.
Wei
,
K.
,
Yang
,
Y.
,
Zuo
,
H.
, and
Zhong
,
D.
,
2020
, “
A Review on Ice Detection Technology and Ice Elimination Technology for Wind Turbine
,”
Wind Energy
,
23
(
3
), pp.
433
457
.10.1002/we.2427
28.
Cai
,
J.
,
Tian
,
Y.
,
Meng
,
X.
,
Han
,
X.
,
Zhang
,
D.
, and
Hu
,
H.
,
2017
, “
An Experimental Study of Icing Control Using DBD Plasma Actuator
,”
Exp. Fluids
,
58
(
8
), pp. 1–8.10.1007/s00348-017-2378-y
29.
Liu
,
Y.
,
Kolbakir
,
C.
,
Hu
,
H.
, and
Hu
,
H.
,
2018
, “
A Comparison Study on the Thermal Effects in DBD Plasma Actuation and Electrical Heating for Aircraft Icing Mitigation
,”
Int J. Heat Mass Transfer
,
124
, pp.
319
330
.10.1016/j.ijheatmasstransfer.2018.03.076
30.
Meng
,
X.
,
Hu
,
H.
,
Li
,
C.
,
Abbasi
,
A. A.
,
Cai
,
J.
, and
Hu
,
H.
,
2019
, “
Mechanism Study of Coupled Aerodynamic and Thermal Effects Using Plasma Actuation for Anti-Icing
,”
Phys. Fluids
,
31
(
3
), p.
037103
.10.1063/1.5086884
31.
Zheng
,
X.
,
Song
,
H.
,
Bian
,
D.
,
Liang
,
H.
,
Zong
,
H.
,
Huang
,
Z.
,
Wang
,
Y.
, and
Xu
,
W.
,
2021
, “
A Hybrid Plasma de-Icing Actuator by Using SiC Hydrophobic Coating-Based Quartz Glass as Barrier Dielectric
,”
J. Phys. D: Appl. Phys.
,
54
(
37
), p.
375202
.10.1088/1361-6463/ac0bd8
32.
Wei
,
B.
,
Wu
,
Y.
,
Liang
,
H.
,
Zhu
,
Y.
,
Chen
,
J.
,
Zhao
,
G.
,
Song
,
H.
,
Jia
,
M.
, and
Xu
,
H.
,
2019
, “
SDBD Based Plasma Anti-Icing: A Stream-Wise Plasma Heat Knife Configuration and Criteria Energy Analysis
,”
Int. J. Heat Mass Transfer
,
138
, pp.
163
172
.10.1016/j.ijheatmasstransfer.2019.04.051
33.
Abdollahzadeh
,
M.
,
Rodrigues
,
F.
, and
Pascoa
,
J. C.
,
2020
, “
Simultaneous Ice Detection and Removal Based on Dielectric Barrier Discharge Actuators
,”
Sens. Actuators, A
,
315
, p.
112361
.10.1016/j.sna.2020.112361
34.
Rodrigues
,
F.
,
Abdollahzadeh
,
M.
,
Pascoa
,
J. C.
, and
Oliveira
,
P. J.
,
2021
, “
An Experimental Study on Segmented-Encapsulated Electrode Dielectric-Barrier-Discharge Plasma Actuator for Mapping Ice Formation on a Surface: A Conceptual Analysis
,”
ASME J Heat Mass Transfer-Trans. ASME
,
143
(
1
), p.
011701
.10.1115/1.4048252
35.
Abdollahzadeh
,
M.
,
Rodrigues
,
F.
,
Nunes-Pereira
,
J.
,
Pascoa
,
J. C.
, and
Pires
,
L.
,
2022
, “
Parametric Optimization of Surface Dielectric Barrier Discharge Actuators for Ice Sensing Application
,”
Sens. Actuators, A
,
335
, p.
113391
.10.1016/j.sna.2022.113391
36.
Dearing
,
S.
,
Lambert
,
S.
, and
Morrison
,
J.
,
2007
, “
Flow Control With Active Dimples
,”
Aeronaut. J.
,
111
(
1125
), pp.
705
714
.10.1017/S0001924000004887
37.
Dearing
,
S. S.
,
Morrison
,
J. F.
, and
Iannucci
,
L.
,
2010
, “
Electro-Active Polymer (EAP) “Dimple” Actuators for Flow Control: Design and Characterisation
,”
Sens. Actuators, A
,
157
(
2
), pp.
210
218
.10.1016/j.sna.2009.11.017
38.
Truong
,
B. N. M.
, and
Ahn
,
K. K.
,
2013
, “
Modeling and Control of Hysteresis for DEAP Actuator
,”
Sens. Actuators, A
,
201
, pp.
193
206
.10.1016/j.sna.2013.07.004
39.
Gonzalez
,
D.
,
Garcia
,
J.
, and
Newell
,
B.
,
2019
, “
Electromechanical Characterization of a 3D Printed Dielectric Material for Dielectric Electroactive Polymer Actuators
,”
Sens. Actuators, A
,
297
, p.
111565
.10.1016/j.sna.2019.111565
40.
Wang
,
Y.
,
Ma
,
X.
,
Jiang
,
Y.
,
Zang
,
W.
,
Cao
,
P.
,
Tian
,
M.
,
Ning
,
N.
, and
Zhang
,
L.
,
2022
, “
Dielectric Elastomer Actuators for Artificial Muscles: A Comprehensive Review of Soft Robot Explorations
,”
Resour. Chemicals Mater.
,
1
(
3–4
), pp.
308
324
.10.1016/j.recm.2022.09.001
41.
Qiu
,
Y.
,
Zhang
,
E.
,
Plamthottam
,
R.
, and
Pei
,
Q.
,
2019
, “
Dielectric Elastomer Artificial Muscle: Materials Innovations and Device Explorations
,”
Acc. Chem. Res.
,
52
(
2
), pp.
316
325
.10.1021/acs.accounts.8b00516
42.
Nicolau-Kuklińska
,
A.
,
Latko-Durałek
,
P.
,
Nakonieczna
,
P.
,
Dydek
,
K.
,
Boczkowska
,
A.
, and
Grygorczuk
,
J.
,
2018
, “
A New Electroactive Polymer Based on Carbon Nanotubes and Carbon Grease as Compliant Electrodes for Electroactive Actuators
,”
J. Intell. Mater. Syst. Struct.
,
29
(
7
), pp.
1520
1530
.10.1177/1045389X17740979
43.
Vu-Cong
,
T.
,
Jean-Mistral
,
C.
, and
Sylvestre
,
A.
,
2012
, “
Impact of the Nature of the Compliant Electrodes on the Dielectric Constant of Acrylic and Silicone Electroactive Polymers
,”
Smart Mater Struct.
,
21
(
10
), p.
105036
.10.1088/0964-1726/21/10/105036
44.
Hajiesmaili
,
E.
, and
Clarke
,
D. R.
,
2021
, “
Dielectric Elastomer Actuators
,”
J. Appl. Phys.
,
129
(
15
), p.
151102
.10.1063/5.0043959
45.
Jia
,
K.
,
Lu
,
T.
, and
Wang
,
T. J.
,
2016
, “
Response Time and Dynamic Range for a Dielectric Elastomer Actuator
,”
Sens. Actuators, A
,
239
, pp.
8
17
.10.1016/j.sna.2016.01.013
46.
Wiranata
,
A.
,
Kanno
,
M.
,
Chiya
,
N.
,
Okabe
,
H.
,
Horii
,
T.
,
Fujie
,
T.
,
Hosoya
,
N.
, and
Maeda
,
S.
,
2022
, “
High-Frequency, Low-Voltage Oscillations of Dielectric Elastomer Actuators
,”
Appl. Phys. Express
,
15
(
1
), p.
011002
.10.35848/1882-0786/ac3d41
You do not currently have access to this content.