Abstract

Cavitation presents a significant challenge in the operation and longevity of hydraulic machinery. Studying a single cavitation bubble can provide fundamental insights into the phenomenon. One simple and popular method to generate such bubbles is through a low-voltage discharge between two contacting electrodes to create a spark that locally vaporizes water. This study investigates the repeatability of low-voltage discharge in generating consistent bubbles. The electrode length is one parameter that influences the bubble size. However, the excess length (the electrode length after the contact point) is shown to be the primary variable influencing the bubble size rather than the total electrode length. Additionally, even for bubbles of similar size, significant variability in wall pressure peaks was observed for bubbles generated far from the surface. This variability correlates with the time the electrodes require to melt and break. Longer melting times are associated with extended bubble lifetimes and lower pressure peaks.

References

1.
Arndt
,
R. E. A.
,
1981
, “
Cavitation in Fluid Machinery and Hydraulic Structures
,”
Annu. Rev. Fluid Mech.
,
13
(
1
), pp.
273
326
.10.1146/annurev.fl.13.010181.001421
2.
Avellan
,
F.
,
2004
, “
Introduction to Cavitation in Hydraulic Machinery
,”
6th International Conference on Hydraulic Machinery and Hydrodynamics
,
Timisoara, Romania
, Oct. 21–22, pp.
11
22
.https://www.researchgate.net/publication/313526026_Introduction_to_cavitation_in_hydraulic_machinery
3.
Song
,
W. D.
,
Hong
,
M. H.
,
Lukyanchuk
,
B.
, and
Chong
,
T. C.
,
2004
, “
Laser-Induced Cavitation Bubbles for Cleaning of Solid Surfaces
,”
J. Appl. Phys.
,
95
(
6
), pp.
2952
2956
.10.1063/1.1650531
4.
Jančula
,
D.
,
Mikula
,
P.
,
Maršálek
,
B.
,
Rudolf
,
P.
, and
Pochylý
,
F.
,
2014
, “
Selective Method for Cyanobacterial Bloom Removal: Hydraulic Jet Cavitation Experience
,”
Aquacult. Int.
,
22
(
2
), pp.
509
521
.10.1007/s10499-013-9660-7
5.
Maršálek
,
B.
,
Maršálková
,
E.
,
Odehnalová
,
K.
,
Pochylý
,
F.
,
Rudolf
,
P.
,
Stahel
,
P.
,
Rahel
,
J.
,
Čech
,
J.
,
Fialová
,
S.
, and
Zezulka
,
Š.
,
2019
, “
Removal of Microcystis Aeruginosa Through the Combined Effect of Plasma Discharge and Hydrodynamic Cavitation
,”
Water
,
12
(
1
), p.
8
.10.3390/w12010008
6.
Lew
,
K. S. F.
,
Klaseboer
,
E.
, and
Khoo
,
B. C.
,
2007
, “
A Collapsing Bubble-Induced Micropump: An Experimental Study
,”
Sens. Actuators, A
,
133
(
1
), pp.
161
172
.10.1016/j.sna.2006.03.023
7.
Marmottant
,
P.
, and
Hilgenfeldt
,
S.
,
2004
, “
A Bubble-Driven Microfluidic Transport Element for Bioengineering
,”
Proc. Natl. Acad. Sci.
,
101
(
26
), pp.
9523
9527
.10.1073/pnas.0307007101
8.
Sarraf
,
S. S.
,
Talabazar
,
F. R.
,
Namli
,
I.
,
Maleki
,
M.
,
Aghdam
,
A. S.
,
Gharib
,
G.
,
Grishenkov
,
D.
,
Ghorbani
,
M.
, and
Koşar
,
A.
,
2022
, “
Fundamentals, Biomedical Applications and Future Potential of Micro-Scale Cavitation-a Review
,”
Lab Chip
,
22
(
12
), pp.
2237
2258
.10.1039/D2LC00169A
9.
Arndt
,
R. E. A.
,
2002
, “
Cavitation in Vortical Flows
,”
Annu. Rev. Fluid Mech.
,
34
(
1
), pp.
143
175
.10.1146/annurev.fluid.34.082301.114957
10.
Blake
,
R.
, and
Gibson
,
D. C.
,
1987
, “
Cavitation Bubbles Near Boundaries
,”
Annu. Rev. Fluid Mech.
,
19
(
1
), pp.
99
123
.10.1146/annurev.fl.19.010187.000531
11.
Plesset
,
M. S.
, and
Prosperetti
,
A.
,
1977
, “
Bubble Dynamics and Cavitation
,”
Annu. Rev. Fluid Mech.
,
9
(
1
), pp.
145
185
.10.1146/annurev.fl.09.010177.001045
12.
Supponen
,
O.
,
Obreschkow
,
D.
,
Tinguely
,
M.
,
Kobel
,
P.
,
Dorsaz
,
N.
, and
Farhat
,
M.
,
2016
, “
Scaling Laws for Jets of Single Cavitation Bubbles
,”
J. Fluid Mech.
,
802
, pp.
263
293
.10.1017/jfm.2016.463
13.
Pecha
,
R.
, and
Gompf
,
B.
,
2000
, “
Microimplosions: Cavitation Collapse and Shock Wave Emission on a Nanosecond Time Scale
,”
Phys. Rev. Lett.
,
84
(
6
), pp.
1328
1330
.10.1103/PhysRevLett.84.1328
14.
Reuter
,
F.
,
Deiter
,
C.
, and
Ohl
,
C.-D.
,
2022
, “
Cavitation Erosion by Shockwave Self-Focusing of a Single Bubble
,”
Ultrason. Sonochem.
,
90
, p.
106131
.10.1016/j.ultsonch.2022.106131
15.
Gonzalez-Avila
,
S. R.
,
Denner
,
F.
, and
Ohl
,
C.-D.
,
2021
, “
The Acoustic Pressure Generated by the Cavitation Bubble Expansion and Collapse Near a Rigid Wall
,”
Phys. Fluids
,
33
(
3
), p.
032118
.10.1063/5.0043822
16.
Nguyen
,
V.-T.
,
Sagar
,
H. J.
,
Moctar
,
O. E.
, and
Park
,
W.-G.
,
2024
, “
Understanding Cavitation Bubble Collapse and Rebound Near a Solid Wall
,”
Int. J. Mech. Sci.
,
278
, p.
109473
.10.1016/j.ijmecsci.2024.109473
17.
Supponen
,
O.
,
Obreschkow
,
D.
,
Kobel
,
P.
,
Dorsaz
,
N.
, and
Farhat
,
M.
,
2019
, “
Detailed Experiments on Weakly Deformed Cavitation Bubbles
,”
Exp. Fluids
,
60
(
2
), p.
33
.10.1007/s00348-019-2679-4
18.
Brujan
,
E.-A.
,
Zhang
,
A.-M.
,
Liu
,
Y.-L.
,
Ogasawara
,
T.
, and
Takahira
,
H.
,
2022
, “
Jetting and Migration of a Laser-Induced Cavitation Bubble in a Rectangular Channel
,”
J. Fluid Mech.
,
948
, p.
A6
.10.1017/jfm.2022.695
19.
Podbevšek
,
D.
,
Lokar
,
Ž.
,
Podobnikar
,
J.
,
Petkovšek
,
R.
, and
Dular
,
M.
,
2021
, “
Experimental Evaluation of Methodologies for Single Transient Cavitation Bubble Generation in Liquids
,”
Exp. Fluids
,
62
(
8
), p.
167
.10.1007/s00348-021-03260-1
20.
Prabhakar
,
A.
,
Sarkar
,
U.
,
Ghoshal
,
R.
, and
Ghoshal
,
A.
,
2023
, “
A Method for Consistent Cavitation Bubble Generation at Different Voltages
,”
Rev. Sci. Instrum.
,
94
(
8
), p.
085114
.10.1063/5.0155163
21.
Goh
,
B. H. T.
,
Oh
,
Y. D. A.
,
Klaseboer
,
E.
,
Ohl
,
S. W.
, and
Khoo
,
B. C.
,
2013
, “
A Low-Voltage Spark-Discharge Method for Generation of Consistent Oscillating Bubbles
,”
Rev. Sci. Instrum.
,
84
(
1
), p.
014705
.10.1063/1.4776187
22.
Kannan
,
Y. S.
,
Karri
,
B.
, and
Sahu
,
K. C.
,
2018
, “
Letter: Entrapment and Interaction of an Air Bubble With an Oscillating Cavitation Bubble
,”
Phys. Fluids
,
30
(
4
), p.
041701
.10.1063/1.5025122
23.
Luo
,
J.
,
Xu
,
W.
,
Deng
,
J.
,
Zhai
,
Y.
, and
Zhang
,
Q.
,
2018
, “
Experimental Study on the Impact Characteristics of Cavitation Bubble Collapse on a Wall
,”
Water
,
10
(
9
), p.
1262
.10.3390/w10091262
24.
Luo
,
J.
, and
Niu
,
Z.
,
2019
, “
Jet and Shock Wave From Collapse of Two Cavitation Bubbles
,”
Sci. Rep.
,
9
(
1
), p.
1352
.10.1038/s41598-018-37868-x
25.
Chew
,
L. W.
,
Klaseboer
,
E.
,
Ohl
,
S.-W.
, and
Khoo
,
B. C.
,
2011
, “
Interaction of Two Differently Sized Oscillating Bubbles in a Free Field
,”
Phys. Rev. E
,
84
(
6
), p.
066307
.10.1103/PhysRevE.84.066307
26.
Guo
,
X.-D.
,
Wang
,
S.-N.
,
Liu
,
N.-N.
,
Wu
,
C.-L.
,
Sun
,
P.-N.
, and
Peng
,
Y.-X.
,
2024
, “
Experimental Investigation on the Interaction of Spark-Generated Array Bubbles Near a Rigid Wall
,”
Phys. Fluids
,
36
(
4
), p.
047117
.10.1063/5.0199266
27.
Sato
,
T.
,
Tinguely
,
M.
,
Oizumi
,
M.
, and
Farhat
,
M.
,
2013
, “
Evidence for Hydrogen Generation in Laser- or Spark-Induced Cavitation Bubbles
,”
Appl. Phys. Lett.
,
102
(
7
), p.
074105
.10.1063/1.4793193
28.
Fujisawa
,
N.
,
Fujita
,
Y.
,
Yanagisawa
,
K.
,
Fujisawa
,
K.
, and
Yamagata
,
T.
,
2018
, “
Simultaneous Observation of Cavitation Collapse and Shock Wave Formation in Cavitating Jet
,”
Exp. Therm. Fluid Sci.
,
94
, pp.
159
167
.10.1016/j.expthermflusci.2018.02.012
29.
Supponen
,
O.
,
Obreschkow
,
D.
,
Kobel
,
P.
,
Tinguely
,
M.
,
Dorsaz
,
N.
, and
Farhat
,
M.
,
2017
, “
Shock Waves From Nonspherical Cavitation Bubbles
,”
Phys. Rev. Fluids
,
2
(
9
), p.
093601
.10.1103/PhysRevFluids.2.093601
30.
Vogel
,
A.
,
Lauterborn
,
W.
, and
Timm
,
R.
,
1989
, “
Optical and Acoustic Investigations of the Dynamics of Laser-Produced Cavitation Bubbles Near a Solid Boundary
,”
J. Fluid Mech.
,
206
, pp.
299
338
.10.1017/S0022112089002314
31.
Supponen
,
O.
,
Kobel
,
P.
,
Obreschkow
,
D.
, and
Farhat
,
M.
,
2015
, “
The Inner World of a Collapsing Bubble
,”
Phys. Fluids
,
27
(
9
), p.
091113
.10.1063/1.4931098
32.
Bradski
,
G.
,
2000
, “
The OpenCV Library
,”
Dr. Dobb’s J. Software Tools
,
25
(
11
), pp.
120
125
.https://www.drdobbs.com/open-source/the-opencv-library/184404319
33.
Plesset
,
M. S.
,
1949
, “
The Dynamics of Cavitation Bubbles
,”
ASME J. Appl. Mech.
,
16
(
3
), pp.
277
282
.10.1115/1.4009975
34.
Gong
,
S. W.
,
Ohl
,
S. W.
,
Klaseboer
,
E.
, and
Khoo
,
B. C.
,
2010
, “
Scaling Law for Bubbles Induced by Different External Sources: Theoretical and Experimental Study
,”
Phys. Rev. E
,
81
(
5
), p.
056317
.10.1103/PhysRevE.81.056317
35.
Prosperetti
,
A.
, and
Lezzi
,
A.
,
1986
, “
Bubble Dynamics in a Compressible Liquid. Part 1. First-Order Theory
,”
J. Fluid Mech.
,
168
, pp.
457
478
.10.1017/S0022112086000460
You do not currently have access to this content.