Abstract

The interaction of a droplet with a solid wall is relevant in various engineering applications. The properties of the resulting secondary droplets are determined by the wall temperature, ambient pressure, impact momentum, and impact angle. This paper presents a comprehensive characterization of drop–wall interactions and the subsequent atomization as a function of the combined effects of such parameters. A drop–wall interaction model is derived for F-24 liquid fuel droplets using smoothed particle hydrodynamics (SPH). F-24 is a derivative of Jet-A aviation fuel with military additives, and it is the focus of this study due to its common use in military applications. The model can predict different impact outcome regimes (deposition, rebound, contact-splash, and film-splash) for different ambient pressures, wall temperatures, and impact parameters. The model also addresses the effect of ambient pressure on the Leidenfrost behavior. Size distributions of secondary droplets are compared for vertical and nonvertical impacts of F-24 droplets on superheated surfaces in the film-boiling regime. The nondimensional Sauter mean diameter (SMD) of the secondary droplets varies based on the position in the impact plane for all the nonvertical impacts but remains almost unchanged for vertical impacts. The zone of leading direction for nonvertical impact consists of larger secondary droplets, and the size decreases toward the zone of trailing direction. An empirical relation is proposed to represent this trend. This research sheds light on successive droplet impacts by studying the effects of impact frequency on SMD evolution. The results are compared to single droplet impact cases for different fuels and Weber numbers. The size of secondary droplets for successive impacts is observed to be nearly indistinguishable from that of single droplet vertical impacts.

References

1.
Kan
,
Z.
,
Hu
,
Z.
,
Lou
,
D.
,
Tan
,
P.
,
Cao
,
Z.
, and
Yang
,
Z.
,
2018
, “
Effects of Altitude on Combustion and Ignition Characteristics of Speed-Up Period During Cold Start in a Diesel Engine
,”
Energy
,
150
, pp.
164
175
.10.1016/j.energy.2017.12.103
2.
Lin
,
B.-X.
,
Wu
,
Y.
,
Xu
,
M.-X.
, and
Shen
,
Y.-M.
,
2021
, “
Experimental Investigation on High-Altitude Ignition and Ignition Enhancement by Multi-Channel Plasma Igniter
,”
Plasma Chem. Plasma Process.
,
41
(
5
), pp.
1435
1454
.10.1007/s11090-021-10189-0
3.
Xu
,
Z.
,
Ji
,
F.
,
Ding
,
S.
,
Zhao
,
Y.
,
Zhang
,
X.
,
Zhou
,
Y.
,
Zhang
,
Q.
, and
Du
,
F.
,
2020
, “
High-Altitude Performance and Improvement Methods of Poppet Valves 2-Stroke Aircraft Diesel Engine
,”
Appl. Energy
,
276
, p.
115471
.10.1016/j.apenergy.2020.115471
4.
Motily
,
A. H.
,
Ryu
,
J. I.
,
Kim
,
K.
,
Kim
,
K.
,
Kweon
,
C.-B. M.
, and
Lee
,
T.
,
2021
, “
High-Pressure Fuel Spray Ignition Behavior With Hot Surface Interaction
,”
Proc. Combust. Inst.
,
38
(
4
), pp.
5665
5672
.10.1016/j.proci.2020.08.041
5.
Kim
,
S.
,
Torelli
,
R.
,
Oruganti
,
S. K.
,
Ryu
,
J. I.
,
Lee
,
T.
,
Kim
,
K. S.
, and
Kweon
,
C.-B. M.
,
2023
, “
Modeling of the Spray-Induced Wall Stress Acting on the Ignition Assistance Device
,”
Phys. Fluids
,
35
(
10
), p.
103325
.10.1063/5.0173360
6.
Oruganti
,
S. K.
,
Torelli
,
R.
,
Kim
,
K. S.
,
Mayhew
,
E.
, and
Kweon
,
C.-B.
,
2024
, “
A Phenomenological Thermal Spray Wall Interaction Modeling Framework Applied to a High-Temperature Ignition Assistant Device
,”
ASME J. Eng. Gas Turbines Power
,
146
(
9
), p.
091010
.10.1115/1.4064481
7.
Wolfowitz, P.
,
2004
, “
DoD Management Policy for Energy Commodities and Related Services
,” U.S. Department of Defense, WA, Report No.
4140.25.
https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/414025p.pdf
8.
Federal Aviation Administration
,
2014
, “
Special Airworthiness Information Bulletin
,” U.S. Department of Transportation, WA, Report No.
SAIB NE-14-28.
https://www.faa.gov/aircraft/safety/alerts/saib
9.
Bernardin
,
J. D.
, and
Mudawar
,
I.
,
1997
, “
Film Boiling Heat Transfer of Droplet Streams and Sprays
,”
Int. J. Heat Mass Transfer
,
40
(
11
), pp.
2579
2593
.10.1016/S0017-9310(96)00297-9
10.
Quéré
,
D.
,
2013
, “
Leidenfrost Dynamics
,”
Annu. Rev. Fluid Mech.
,
45
(
1
), pp.
197
215
.10.1146/annurev-fluid-011212-140709
11.
Schmidt
,
J. B.
,
Breitenbach
,
J.
,
Roisman
,
I. V.
, and
Tropea
,
C.
,
2022
, “
Interaction of Drops and Sprays With a Heated Wall
,”
Droplet Dynamics Under Extreme Ambient Conditions
,
Springer International Publishing
,
Cham, Switzerland
, pp.
333
353
.
12.
Orejon
,
D.
,
Sefiane
,
K.
, and
Takata
,
Y.
,
2014
, “
Effect of Ambient Pressure on Leidenfrost Temperature
,”
Phys. Rev. E
,
90
(
5
), p.
053012
.10.1103/PhysRevE.90.053012
13.
van Limbeek
,
M. A.
,
Ramírez-Soto
,
O.
,
Prosperetti
,
A.
, and
Lohse
,
D.
,
2021
, “
How Ambient Conditions Affect the Leidenfrost Temperature
,”
Soft Matter
,
17
(
11
), pp.
3207
3215
.10.1039/D0SM01570A
14.
Visser
,
C. W.
,
Frommhold
,
P. E.
,
Wildeman
,
S.
,
Mettin
,
R.
,
Lohse
,
D.
, and
Sun
,
C.
,
2015
, “
Dynamics of High-Speed Micro-Drop Impact: Numerical Simulations and Experiments at Frame-to-Frame Times Below 100 ns
,”
Soft Matter
,
11
(
9
), pp.
1708
1722
.10.1039/C4SM02474E
15.
Singh
,
S.
, and
Saha
,
A. K.
,
2023
, “
Numerical Study of Heat Transfer During Oblique Impact of a Cold Drop on a Heated Liquid Film
,”
ASME J. Therm. Sci. Eng. Appl.
,
15
(
5
), p.
050907
.10.1115/1.4054910
16.
Yao
,
S.-C.
, and
Cai
,
K. Y.
,
1988
, “
The Dynamics and Leidenfrost Temperature of Drops Impacting on a Hot Surface at Small Angles
,”
Exp. Therm. Fluid Sci.
,
1
(
4
), pp.
363
371
.10.1016/0894-1777(88)90016-7
17.
Karl
,
A.
, and
Frohn
,
A.
,
2000
, “
Experimental Investigation of Interaction Processes Between Droplets and Hot Walls
,”
Phys. Fluids
,
12
(
4
), pp.
785
796
.10.1063/1.870335
18.
Wachters
,
L.
, and
Westerling
,
N.
,
1966
, “
The Heat Transfer From a Hot Wall to Impinging Water Drops in the Spheroidal State
,”
Chem. Eng. Sci.
,
21
(
11
), pp.
1047
1056
.10.1016/0009-2509(66)85100-X
19.
Guo
,
Y.
, and
Lian
,
Y.
,
2017
, “
High-Speed Oblique Drop Impact on Thin Liquid Films
,”
Phys. Fluids
,
29
(
8
), p.
082108
.10.1063/1.4996588
20.
Chen
,
Z.
,
Shu
,
C.
,
Wang
,
Y.
, and
Yang
,
L.
,
2020
, “
Oblique Drop Impact on Thin Film: Splashing Dynamics at Moderate Impingement Angles
,”
Phys. Fluids
,
32
(
3
), p.
033303
.10.1063/5.0004142
21.
Sohag
,
M. M. A.
,
Chausalkar
,
A.
,
Li
,
L.
, and
Yang
,
X.
,
2022
, “
Numerical Study of Drop Spread and Rebound on Heated Surfaces With Consideration of High Pressure
,”
Phys. Fluids
,
34
(
11
), p.
113319
.10.1063/5.0124794
22.
Ahamed
,
S.
,
Cho
,
Y.
,
Kong
,
S.-C.
, and
Kweon
,
C.-B. M.
,
2022
, “
Development and Application of a Drop-Wall Interaction Model at High Ambient Pressure Conditions
,”
Atomization Sprays
,
32
(
4
), pp.
1
23
.10.1615/AtomizSpr.2022038549
23.
Pan
,
Y.
,
Yang
,
X.
,
Kong
,
S.-C.
, and
Kweon
,
C.-B. M.
,
2020
, “
SPH Simulations of Drop Impact on Heated Walls and Determination of Impact Criteria
,”
Atomization Sprays
,
30
(
2
), pp.
131
152
.10.1615/AtomizSpr.2020032857
24.
Pan
,
Y.
,
Yang
,
X.
,
Kong
,
S.-C.
, and
Kweon
,
C.-B. M.
,
2020
, “
Development of Drop/Wall Interaction Model for Application in Engine Conditions
,”
Atomization Sprays
,
30
(
3
), pp.
153
170
.10.1615/AtomizSpr.2020032858
25.
Patwary
,
M. F.
,
Isik
,
D.
,
Kong
,
S.-C.
,
Mayhew
,
E.
,
Kim
,
K.
, and
Kweon
,
C.-B. M.
,
2024
, “
Characterizing Drop-Wall Interactions of Engine Fuels at Engine-Relevant Conditions Using Smoothed Particle Hydrodynamics
,”
ASME J. Eng. Gas Turbines Power
,
146
(
8
), p.
081023
.10.1115/1.4064802
26.
Subedi
,
K. K.
,
Kong
,
S.-C.
, and
Kweon
,
C.-B. M.
,
2022
, “
Numerical Study of Consecutive Drop/Wall Impacts Using Smoothed Particle Hydrodynamics
,”
Int. J. Multiphase Flow
,
151
, p.
104060
.10.1016/j.ijmultiphaseflow.2022.104060
27.
Hiroyasu
,
H.
, and
Kadota
,
T.
,
1974
, “
Fuel Droplet Size Distribution in Diesel Combustion Chamber
,”
SAE
Paper No. 740715.10.4271/740715
28.
Yang
,
X.
, and
Kong
,
S.-C.
,
2017
, “
Smoothed Particle Hydrodynamics Method for Evaporating Multiphase Flows
,”
Phys. Rev. E
,
96
(
3
), p.
033309
.10.1103/PhysRevE.96.033309
29.
Yang
,
X.
,
Pan
,
Y.
, and
Kong
,
S.-C.
,
2018
, “
Predicting the Outcomes of Fuel Drop Impact on Heated Surfaces Using SPH Simulation
,”
14th Triennial International Conference on Liquid Atomization and Spray Systems
,
Chicago, IL
,
July 22–26
, pp.
1
5
.https://arxiv.org/pdf/1712.05830
30.
Adami
,
S.
,
Hu
,
X.
, and
Adams
,
N. A.
,
2010
, “
A New Surface-Tension Formulation for Multi-Phase SPH Using a Reproducing Divergence Approximation
,”
J. Comput. Phys.
,
229
(
13
), pp.
5011
5021
.10.1016/j.jcp.2010.03.022
31.
Monaghan
,
J. J.
,
1992
, “
Smoothed Particle Hydrodynamics
,”
Annu. Rev. Astron. Astrophys.
,
30
(
1
), pp.
543
574
.10.1146/annurev.aa.30.090192.002551
32.
Bonet
,
J.
, and
Lok
,
T.-S.
,
1999
, “
Variational and Momentum Preservation Aspects of Smooth Particle Hydrodynamic Formulations
,”
Comput. Methods Appl. Mech. Eng.
,
180
(
1–2
), pp.
97
115
.10.1016/S0045-7825(99)00051-1
33.
Welzl
,
E.
,
1991
, “
Smallest Enclosing Disks (Balls and Ellipsoids)
,”
Proceedings of the New Results and New Trends in Computer Science, Graz, Austria
,
June 20–21
,
Springer
, pp.
359
370
.
34.
Yang
,
X.
,
Ray
,
M.
,
Kong
,
S.-C.
, and
Kweon
,
C.-B. M.
,
2019
, “
SPH Simulation of Fuel Drop Impact on Heated Surfaces
,”
Proc. Combust. Inst.
,
37
(
3
), pp.
3279
3286
.10.1016/j.proci.2018.07.078
35.
Pan
,
Y.
,
Yang
,
X.
,
Kong
,
S.-C.
,
Ting
,
F. C.
,
Iyer
,
C.
, and
Yi
,
J.
,
2022
, “
Characterization of Fuel Drop Impact on Wall Films Using SPH Simulation
,”
Int. J. Engine Res.
,
23
(
3
), pp.
416
433
.10.1177/1468087421992888
36.
Yang
,
X.
, and
Kong
,
S.-C.
,
2020
, “
Smoothed Particle Hydrodynamics Modeling of Fuel Drop Impact on a Heated Surface at Atmospheric and Elevated Pressures
,”
Phys. Rev. E
,
102
(
3
), p.
033313
.10.1103/PhysRevE.102.033313
37.
Chausalkar
,
A.
,
Kong
,
S.-C.
, and
Michael
,
J. B.
,
2019
, “
Multicomponent Drop Breakup During Impact With Heated Walls
,”
Int. J. Heat Mass Transfer
,
141
, pp.
685
695
.10.1016/j.ijheatmasstransfer.2019.06.033
38.
Staat
,
H. J.
,
Tran
,
T.
,
Geerdink
,
B.
,
Riboux
,
G.
,
Sun
,
C.
,
Gordillo
,
J. M.
, and
Lohse
,
D.
,
2015
, “
Phase Diagram for Droplet Impact on Superheated Surfaces
,”
J. Fluid Mech.
,
779
, p.
R3
.10.1017/jfm.2015.465
39.
Werner
,
R.
,
Mayhew
,
E.
,
Kim
,
K.
,
Kweon
,
C.-B.
, and
Michael
,
J. B.
,
2024
, “
Examining Surface Wetting and Leidenfrost Transition of Jet Fuels and Bicomponent Mixtures
,”
Exp. Therm. Fluid Sci.
,
154
, p.
111167
.10.1016/j.expthermflusci.2024.111167
40.
Pichler
,
C.
, and
Nilsson
,
E.
,
2020
, “
Analysis of Important Chemical Pathways of N-Heptane Combustion in Small Skeletal Mechanisms
,”
Energy Fuels
,
34
(
1
), pp.
758
768
.10.1021/acs.energyfuels.9b03263
41.
Malatesta
,
W. A.
, and
Yang
,
B.
,
2021
, “
Aviation Turbine Fuel Thermal Conductivity: A Predictive Approach Using Entropy Scaling-Guided Machine Learning With Experimental Validation
,”
ACS Omega
,
6
(
43
), pp.
28579
28586
.10.1021/acsomega.1c02934
42.
Temme
,
J. E.
,
Busch
,
S.
,
Coburn
,
V. D.
, and
Kweon
,
C.-B. M.
,
2019
, “
Fuel Blend Ratio Effects on Ignition and Early Stage Soot Formation
,”
11th U.S. National Combustion Meeting
,
Pasadena, CA
,
Mar. 24–27
, pp.
1
10
.https://www.osti.gov/servlets/purl/1602158
43.
Chickos
,
J. S.
, and
Zhao
,
H.
,
2005
, “
Measurement of the Vaporization Enthalpy of Complex Mixtures by Correlation-Gas Chromatography. The Vaporization Enthalpy of RP-1, JP-7, and JP-8 Rocket and Jet Fuels at T = 298.15 K
,”
Energy Fuels
,
19
(
5
), pp.
2064
2073
.10.1021/ef050116m
44.
Council
,
N. R.
,
1996
,
Physical and Chemical Properties of Military Fuels
,
National Academy Press
,
Washington, DC
, pp.
13
17
.
45.
Gultekin
,
A.
,
Erkan
,
N.
,
Ozdemir
,
E.
,
Colak
,
U.
, and
Suzuki
,
S.
,
2021
, “
Simultaneous Multiple Droplet Impact and Their Interactions on a Heated Surface
,”
Exp. Therm. Fluid Sci.
,
120
, p.
110255
.10.1016/j.expthermflusci.2020.110255
46.
Benther
,
J. D.
,
Restrepo
,
J. D. P.
,
Stanley
,
C.
, and
Rosengarten
,
G.
,
2022
, “
Successive Droplet Impingement Onto Heated Surfaces of Different Wettabilities
,”
Int. J. Heat Mass Transfer
,
185
, p.
122169
.10.1016/j.ijheatmasstransfer.2021.122169
You do not currently have access to this content.