Abstract

High-fidelity simulation is conducted to investigate liquid jet in crossflow, specifically regarding the rectangular nozzle. The influence of aspect ratio (AR) of nozzles on the atomization characteristics of liquid column in the process of primary breakup is explored by the analysis of the flow structure of crossflow and liquid column. The aspect ratio is ranging from 1 to 8. The results indicate that as the increase of aspect ratio, the disturbance of crossflow to the liquid on the sides is weakened. While the thickness of liquid column also gradually decreases, which enables smaller disturbances to promote droplet shedding. Therefore, surface breakup first weakens and then strengthens. In the column breakup process, the increase of aspect ratio causes crossflow to become the main factor affecting column breakup, and the influence of air pressure gradually weakens. This indicates a shift in the mechanism of surface instability from “Rayleigh–Taylor” (R–T) instability to “Kelvin–Helmholtz” (K–H) instability.

References

1.
Wang
,
L.
,
Zhang
,
L. T.
,
Lin
,
W. H.
,
Wu
,
Y. C.
, and
Wu
,
X. C.
,
2022
, “
Spray Trajectory and 3D Droplets Distribution of Liquid Jet in Crossflow With Digital Inline Holography
,”
Exp. Therm. Fluid Sci.
,
139
, p.
110725
.10.1016/j.expthermflusci.2022.110725
2.
Sinha
,
A.
,
2021
, “
Effect of Injector Geometry in Breakup of Liquid Jet in Crossflow Insights From POD
,”
Int. J. Multiphase Flow
,
167
, p.
104497
.10.1016/j.ijmultiphaseflow.2023.104497
3.
Amini
,
G.
,
2018
, “
Linear Stability Analysis of a Liquid Jet in a Weak Crossflow
,”
Phys. Fluids
,
30
(
8
), p.
084105
.10.1063/1.5043589
4.
Huang
,
J.
,
Zhao
,
X.
, and
Jiang
,
H.
,
2021
, “
Numerical Simulation of the Atomization of Liquid Transverse Jet in Supersonic Airflow
,”
Phys. Fluids
,
33
(
5
), p.
052114
.10.1063/5.0050520
5.
Kasmaiee
,
S.
, and
Tadjfar
,
M.
,
2022
, “
Influence of Injection Angle on Liquid Jet in Crossflow
,”
Int. J. Multiphase Flow
,
153
, p.
104128
.10.1016/j.ijmultiphaseflow.2022.104128
6.
Broumand
,
M.
, and
Birouk
,
M.
,
2016
, “
Liquid Jet in a Subsonic Gaseous Crossflow: Recent Progress and Remaining Challenges
,”
Prog. Energy Combust. Sci.
,
57
, pp.
1
29
.10.1016/j.pecs.2016.08.003
7.
Song
,
J.
,
Cary
,
C. C.
, and
Guen
,
L. J.
,
2015
, “
Liquid Jets in Subsonic Air Crossflow at Elevated Pressure
,”
ASME J. Eng. Gas Turbines Power
,
137
(
4
), p.
041502
.10.1115/1.4028565
8.
Almeida
,
H.
,
Sousa
,
J. M. M.
, and
Costa
,
M.
,
2014
, “
Effect of the Liquid Injection Angle on the Atomization of Liquid Jets in Subsonic Crossflows
,”
Atomization Sprays
,
24
(
1
), pp.
81
96
.10.1615/AtomizSpr.2013008310
9.
Wang
,
S.
,
Huang
,
Y.
, and
Liu
,
Z.
,
2014
, “
Theoretical Analysis of Surface Waves on a Round Liquid Jet in a Gaseous Crossflow
,”
Atomization Sprays
,
24
(
1
), pp.
23
40
.10.1615/AtomizSpr.2013008203
10.
Broumand
,
M.
, and
Birouk
,
M.
,
2015
, “
A Model for Predicting the Trajectory of a Liquid Jet in a Subsonic Gaseous Crossflow
,”
Atomization Sprays
,
25
(
10
), pp.
871
893
.10.1615/AtomizSpr.2015011881
11.
Li
,
X.
, and
Soteriou
,
M. C.
,
2018
, “
Detailed Numerical Simulation of Liquid Jet Atomization in Crossflow of Increasing Density
,”
Int. J. Multiphase Flow
,
104
, pp.
214
232
.10.1016/j.ijmultiphaseflow.2018.02.016
12.
New
,
T. H.
,
Lim
,
T. T.
, and
Luo
,
S. C.
,
2003
, “
Elliptic Jets in Cross-Flow
,”
J. Fluid Mech.
,
494
, pp.
119
140
.10.1017/S0022112003005925
13.
Wang
,
F.
, and
Fang
,
T.
,
2015
, “
Liquid Jet Breakup for Non-Circular Orifices Under Low Pressures
,”
Int. J. Multiphase Flow
,
72
, pp.
248
262
.10.1016/j.ijmultiphaseflow.2015.02.015
14.
Morad
,
M. R.
, and
Khosrobeygi
,
H.
,
2019
, “
Penetration of Elliptical Liquid Jets in Low-Speed Crossflow
,”
ASME J. Fluids Eng.
,
141
(
1
), p.
011301
.10.1115/1.4040373
15.
Olyaei
,
G.
, and
Kebriaee
,
A.
,
2020
, “
Experimental Study of Liquid Jets Injected in Crossflow
,”
Exp. Therm. Fluid Sci.
,
115
, p.
110049
.10.1016/j.expthermflusci.2020.110049
16.
Sallam
,
K. A.
,
Aalburg
,
C.
, and
Faeth
,
G. M.
,
2004
, “
Breakup of Round Nonturbulent Liquid Jets in Gaseous Crossflow
,”
AIAA J.
,
42
(
12
), pp.
2529
2540
.10.2514/1.3749
17.
Mazallon
,
J.
,
Dai
,
Z.
, and
Faeth
,
G. M.
,
1999
, “
Primary Breakup of Nonturbulent Round Liquid Jets in Gas Crossflows
,”
Atomization Sprays
,
9
(
3
), pp.
291
312
.10.1615/AtomizSpr.v9.i3.40
18.
Sedarsky
,
D.
,
Paciaroni
,
M.
,
Berrocal
,
E.
,
Petterson
,
P.
,
Zelina
,
J.
,
Gord
,
J.
, and
Linne
,
M.
,
2010
, “
Model Validation Image Data for Breakup of a Liquid Jet in Crossflow: Part I
,”
Exp. Fluids
,
49
(
2
), pp.
391
408
.10.1007/s00348-009-0807-2
19.
Linne
,
M.
,
Paciaroni
,
M.
,
Hall
,
T.
, and
Parker
,
T.
,
2006
, “
Ballistic Imaging of the Near Field in a Diesel Spray
,”
Exp. Fluids
,
40
(
6
), pp.
836
846
.10.1007/s00348-006-0122-0
20.
Linne
,
M. A.
,
Paciaroni
,
M.
,
Berrocal
,
E.
, and
Sedarsky
,
D.
,
2009
, “
Ballistic Imaging of Liquid Breakup Processes in Dense Sprays
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
2147
2161
.10.1016/j.proci.2008.07.040
21.
O'Rourke
,
P. J.
, and
Amsden
,
A. A.
,
1987
, “
The TAB Method for Numerical Calculation of Spray Droplet Breakup
,”
SAE
Paper No. 872089.10.4271/872089
22.
Reitz
,
R. D.
, and
Bracco
,
F. V.
,
1982
, “
Mechanism of Atomization of a Liquid Jet
,”
Phys. Fluids
,
25
(
10
), pp.
1730
1742
.10.1063/1.863650
23.
Li
,
X.
, and
Soteriou
,
M. C.
,
2016
, “
High Fidelity Simulation and Analysis of Liquid Jet Atomization in a Gaseous Crossflow at Intermediate Weber Numbers
,”
Phys. Fluids
,
28
(
8
), p.
082101
.10.1063/1.4959290
24.
Nambu
,
T.
, and
Mizobuchi
,
Y.
,
2021
, “
Detailed Numerical Simulation of Primary Atomization by Crossflow Under Gas Turbine Engine Combustor Conditions
,”
Proc. Combust. Inst.
,
38
(
2
), pp.
3213
3221
.10.1016/j.proci.2020.06.067
25.
Bellofiore
,
A.
,
Cavaliere
,
A.
, and
Ragucci
,
R.
,
2007
, “
Air Density Effect on the Atomization of Liquid Jets in Crossflow
,”
Combust. Sci. Technol.
,
179
(
1–2
), pp.
319
342
.10.1080/00102200600809563
26.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.10.1016/0021-9991(92)90240-Y
27.
Syawitri
,
T. P.
,
Yao
,
Y. F.
,
Yao
,
J.
, and
Chandra
,
B.
,
2020
, “
Assessment of Stress-Blended Eddy Simulation Model for Accurate Performance Prediction of Vertical Axis Wind Turbine
,”
Int. J. Numer. Methods Heat Fluid Flow
,
31
(
2
), pp.
655
673
.10.1108/HFF-09-2019-0689
28.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Turbul. Heat Mass Transfer
,
4
(
1
), pp.
625
632
.https://cfd.spbstu.ru/agarbaruk/doc/2003_Menter,%20Kuntz,%20Langtry_Ten%20years%20of%20industrial%20experience%20with%20the%20SST%20turbulence%20model.pdf
29.
Yu
,
S. H.
,
Yin
,
B. F.
,
Deng
,
W. X.
,
Jia
,
H. K.
,
Ye
,
Z.
,
Xu
,
B.
, and
Xu
,
H. P.
,
2018
, “
Numerical Investigation on Effects of Elliptical Diesel Nozzle on Primary Spray Characteristics by Large Eddy Simulation (LES)
,”
Atomization Sprays
,
28
(
8
), pp.
695
712
.10.1615/AtomizSpr.2018026642
30.
Gosman
,
A. D.
, and
Loannides
,
E.
,
1981
, “
Aspects of Computer Simulation of Liquid-Fuelled Combustor
,”
AIAA J.
,
81
, pp.
482
490
.10.2514/6.1981-323
31.
Sallam
,
K.
,
Ng
,
C.
,
Sankarakrishnan
,
R.
,
Aalburg
,
C.
, and
Lee
,
K.
,
2006
, “
Breakup of Turbulent and Non-Turbulent Liquid Jets in Gaseous Crossflows
,”
AIAA
Paper No.
2006
1517
.10.2514/6.2006-1517
32.
Behera
,
S.
, and
Saha
,
A. K.
,
2020
, “
Evolution of the Flow Structures in an Elevated Jet in Crossflow
,”
Phys. Fluids
,
32
(
1
), p.
015102
.10.1063/1.5129498
33.
Liu
,
N.
,
Wang
,
Z. G.
,
Sun
,
M. B.
,
Deiterding
,
R.
, and
Wang
,
H. B.
,
2019
, “
Simulation of Liquid Jet Primary Breakup in a Supersonic Crossflow Under Adaptive Mesh Refinement Framework
,”
Aerosp. Sci. Technol.
,
91
, pp.
456
473
.10.1016/j.ast.2019.05.017
34.
Eslamian
,
M.
,
Amighi
,
A.
, and
Ashgriz
,
N.
,
2014
, “
Atomization of Liquid Jet in High-Pressure and High-Temperature Subsonic Crossflow
,”
AIAA J.
,
52
(
7
), pp.
1374
1385
.10.2514/1.J052548
35.
Behzad
,
M.
,
Ashgriz
,
N.
, and
Karney
,
B. W.
,
2016
, “
Surface Breakup of a Non-Turbulent Liquid Jet Injected Into a High Pressure Gaseous Crossflow
,”
Int. J. Multiphase Flow
,
80
, pp.
100
117
.10.1016/j.ijmultiphaseflow.2015.11.007
36.
Fontes
,
D. H.
,
Vilela
,
V.
,
Meira
,
L. D.
, and
de Souza
,
F. J.
,
2019
, “
Improved Hybrid Model Applied to Liquid Jet in Crossflow
,”
Int. J. Multiphase Flow
,
114
, pp.
98
114
.10.1016/j.ijmultiphaseflow.2019.02.009
37.
Xiao
,
F.
,
Dianat
,
M.
, and
McGuirk
,
J. J.
,
2013
, “
Large Eddy Simulation of Liquid-Jet Primary Breakup in Air Crossflow
,”
AIAA J.
,
51
(
12
), pp.
2878
2893
.10.2514/1.J052509
38.
Li
,
X.
,
Gao
,
H.
, and
Soteriou
,
M. C.
,
2017
, “
Investigation of the Impact of High Liquid Viscosity on Jet Atomization in Crossflow Via High-Fidelity Simulations
,”
Phys. Fluids
,
29
(
8
), p.
082103
.10.1063/1.4996178
You do not currently have access to this content.