Abstract

In this work, we develop a dual-grid approach for the direct numerical simulations of turbulent multiphase flows in the framework of the phase-field method (PFM). With the dual-grid approach, the solution of the Navier–Stokes equations (flow-field) and of the Cahn–Hilliard equation (phase-field) are performed on two different computational grids. In particular, a base grid—fine enough to resolve the flow down to the Kolmogorov scale—is used for the solution of the Navier–Stokes equations, while a refined grid—required to improve the description of small interfacial structures—is used for the solution of the Cahn–Hilliard equation (phase-field method). The proposed approach is validated, and its computational efficiency is evaluated considering the deformation of a drop in a two-dimensional shear flow. Analyzing the computational time and memory usage, we observe a reduction between 30% and 40% (with respect to the single-grid approach), depending on the grid refinement factor employed for the phase-field variable. The applicability of the approach to a realistic three-dimensional case is also discussed, by focusing on the breakage of a thin liquid sheet inside a turbulent channel flow. Indications on the grid resolution representing a good compromise between accuracy and computational efficiency in drop-laden turbulence are also provided.

References

1.
Melville
,
W. K.
,
1996
, “
The Role of Surface-Wave Breaking in Air-Sea Interaction
,”
Annu. Rev. Fluid Mech.
,
28
, p.
279
.10.1146/annurev.fl.28.010196.001431
2.
Villermaux
,
E.
, and
Bossa
,
B.
,
2009
, “
Single-Drop Fragmentation Determines Size Distribution of Raindrops
,”
Nat. Phys.
,
5
, p.
697
.10.1038/nphys1340
3.
Deike
,
L.
,
2022
, “
Mass Transfer at the Ocean–Atmosphere Interface: The Role of Wave Breaking, Droplets, and Bubbles
,”
Annu. Rev. Fluid Mech.
,
54
, pp.
191
224
.10.1146/annurev-fluid-030121-014132
4.
Ling
,
Y.
,
Fuster
,
D.
,
Tryggvason
,
G.
, and
Zaleski
,
S.
,
2019
, “
A Two-Phase Mixing Layer Between Parallel Gas and Liquid Streams: Multiphase Turbulence Statistics and Influence of Interfacial Instability
,”
J. Fluid Mech.
,
859
, p.
268
.10.1017/jfm.2018.825
5.
Karathanassis
,
I. K.
,
Koukouvinis
,
F. P.
, and
Gavaises
,
M.
,
2019
, “
Multiphase Phenomena in Diesel Fuel Injection Systems
,”
Simulations and Optical Diagnostics for Internal Combustion Engines (Energy, Environment, and Sustainability)
,
Springer
,
Singapore
.
6.
Gorokhovski
,
M.
, and
Herrmann
,
M.
,
2008
, “
Modeling Primary Atomization
,”
Annu. Rev. Fluid Mech.
,
40
, p.
343
.10.1146/annurev.fluid.40.111406.102200
7.
Bourouiba
,
L.
,
Dehandschoewercker
,
E.
, and
Bush
,
J. W.
,
2014
, “
Violent Expiratory Events: On Coughing and Sneezing
,”
J. Fluid Mech.
,
745
, pp.
537
563
.10.1017/jfm.2014.88
8.
Balachandar
,
S.
,
Zaleski
,
S.
,
Soldati
,
A.
,
Ahmadi
,
G.
, and
Bourouiba
,
L.
,
2020
, “
Host-to-Host Airborne Transmission as a Multiphase Flow Problem for Science-Based Social Distance Guidelines
,”
Int. J. Multiphase Flow
,
132
, p.
103439
.10.1016/j.ijmultiphaseflow.2020.103439
9.
Wang
,
J.
,
Alipour
,
M.
,
Soligo
,
G.
,
Roccon
,
A.
,
De Paoli
,
M.
,
Picano
,
F.
, and
Soldati
,
A.
,
2021
, “
Short-Range Exposure to Airborne Virus Transmission and Current Guidelines
,”
Proc. Natl. Acad. Sci. U. S. A.
,
118
, p.
e2105279118
.10.1073/pnas.2105279118
10.
Magar
,
V.
, and
Pedley
,
T. J.
,
2005
, “
Average Nutrient Uptake by a Self-Propelled Unsteady Squirmer
,”
J. Fluid Mech.
,
539
, pp.
93
112
.10.1017/S0022112005005768
11.
Metselaar
,
L.
,
Yeomans
,
J. M.
, and
Doostmohammadi
,
A.
,
2019
, “
Topology and Morphology of Self-Deforming Active Shells
,”
Phys. Rev. Lett.
,
123
(
20
), p.
208001
.10.1103/PhysRevLett.123.208001
12.
Tryggvason
,
G.
,
Thomas
,
S.
,
Lu
,
J.
, and
Aboulhasanzadeh
,
B.
,
2010
, “
Multiscale Issues in DNS of Multiphase Flows
,”
Acta Math. Sci.
,
30
(
2
), pp.
551
562
.10.1016/S0252-9602(10)60062-8
13.
Thomas
,
S.
,
Esmaeeli
,
A.
, and
Tryggvason
,
G.
,
2010
, “
Multiscale Computations of Thin Films in Multiphase Flows
,”
Int. J. Multiphase Flow
,
36
, pp.
71
77
.10.1016/j.ijmultiphaseflow.2009.08.002
14.
Soligo
,
G.
,
Roccon
,
A.
, and
Soldati
,
A.
,
2021
, “
Turbulent Flows With Drops and Bubbles: What Numerical Simulations Can Tell Us—Freeman Scholar Lecture
,”
ASME J. Fluids Eng.
,
143
(
8
), p.
080801
.10.1115/1.4050532
15.
Hirt
,
C.
, and
Nicholos
,
B.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
.10.1016/0021-9991(81)90145-5
16.
Osher
,
S.
, and
Sethian
,
J.
,
1994
, “
A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow
,”
J. Comput. Phys.
,
114
(
1
), pp.
146
159
.10.1006/jcph.1994.1155
17.
Jacqmin
,
D.
,
1999
, “
Calculation of Two-Phase Navier–Stokes Flows Using Phase-Field Modeling
,”
J. Comput. Phys.
,
155
(
1
), pp.
96
127
.10.1006/jcph.1999.6332
18.
Dodd
,
M. S.
, and
Ferrante
,
A.
,
2016
, “
On the Interaction of Taylor Length Scale Size Droplets and Isotropic Turbulence
,”
J. Fluid Mech.
,
806
, pp.
356
412
.10.1017/jfm.2016.550
19.
Soligo
,
G.
,
Roccon
,
A.
, and
Soldati
,
A.
,
2019
, “
Breakage, Coalescence and Size Distribution of Surfactant-Laden Droplets in Turbulent Flow
,”
J. Fluid Mech.
,
881
, p.
244
.10.1017/jfm.2019.772
20.
Berger
,
M. J.
, and
Oliger
,
J.
,
1984
, “
Adaptive Mesh Refinement for Hyperbolic Partial Differential Equations
,”
J. Comput. Phys.
,
53
(
3
), pp.
484
512
.10.1016/0021-9991(84)90073-1
21.
Berger
,
M. J.
, and
Colella
,
P.
,
1989
, “
Local Adaptive Mesh Refinement for Shock Hydrodynamics
,”
J. Comput. Phys.
,
82
(
1
), pp.
64
84
.10.1016/0021-9991(89)90035-1
22.
Popinet
,
S.
,
2003
, “
Gerris: A Tree-Based Adaptive Solver for the Incompressible Euler Equations in Complex Geometries
,”
J. Comput. Phys.
,
190
(
2
), pp.
572
600
.10.1016/S0021-9991(03)00298-5
23.
Greaves
,
D.
,
2004
, “
A Quadtree Adaptive Method for Simulating Fluid Flows With Moving Interfaces
,”
J. Comput. Phys.
,
194
(
1
), pp.
35
56
.10.1016/j.jcp.2003.08.018
24.
Fuster
,
D.
,
Bagué
,
A.
,
Boeck
,
T.
,
Le Moyne
,
L.
,
Leboissetier
,
A.
,
Popinet
,
S.
,
Ray
,
P.
,
Scardovelli
,
R.
, and
Zaleski
,
S.
,
2009
, “
Simulation of Primary Atomization With an Octree Adaptive Mesh Refinement and VOF Method
,”
Int. J. Multiphase Flow
,
35
(
6
), pp.
550
565
.10.1016/j.ijmultiphaseflow.2009.02.014
25.
Laurmaa
,
V.
,
Picasso
,
M.
, and
Steiner
,
G.
,
2016
, “
An Octree-Based Adaptive Semi-Lagrangian VOF Approach for Simulating the Displacement of Free Surfaces
,”
Comput. Fluids
,
131
, pp.
190
204
.10.1016/j.compfluid.2016.03.005
26.
Sussman
,
M.
,
Almgren
,
A. S.
,
Bell
,
J. B.
,
Colella
,
P.
,
Howell
,
L. H.
, and
Welcome
,
M. L.
,
1999
, “
An Adaptive Level Set Approach for Incompressible Two-Phase Flows
,”
J. Comput. Phys.
,
148
(
1
), pp.
81
124
.10.1006/jcph.1998.6106
27.
Strain
,
J.
,
1999
, “
Tree Methods for Moving Interfaces
,”
J. Comput. Phys.
,
151
(
2
), pp.
616
648
.10.1006/jcph.1999.6205
28.
Losasso
,
F.
,
Gibou
,
F.
, and
Fedkiw
,
R.
,
2004
, “
Simulating Water and Smoke With an Octree Data Structure
,”
ACM Trans. Graphics
,
23
(
3
), pp.
457
462
.10.1145/1015706.1015745
29.
Losasso
,
F.
,
Fedkiw
,
R.
, and
Osher
,
S.
,
2006
, “
Spatially Adaptive Techniques for Level Set Methods and Incompressible Flow
,”
Comput. Fluids
,
35
(
10
), pp.
995
1010
.10.1016/j.compfluid.2005.01.006
30.
Herrmann
,
M.
,
2008
, “
A Balanced Force Refined Level Set Grid Method for Two-Phase Flows on Unstructured Flow Solver Grids
,”
J. Comput. Phys.
,
227
(
4
), pp.
2674
2706
.10.1016/j.jcp.2007.11.002
31.
Mirzadeh
,
M.
,
Guittet
,
A.
,
Burstedde
,
C.
, and
Gibou
,
F.
,
2016
, “
Parallel Level-Set Methods on Adaptive Tree-Based Grids
,”
J. Comput. Phys.
,
322
, pp.
345
364
.10.1016/j.jcp.2016.06.017
32.
Gibou
,
F.
,
Fedkiw
,
R.
, and
Osher
,
S.
,
2018
, “
A Review of Level-Set Methods and Some Recent Applications
,”
J. Comput. Phys.
,
353
, pp.
82
109
.10.1016/j.jcp.2017.10.006
33.
Fakhari
,
A.
,
Bolster
,
D.
, and
Luo
,
L.-S.
,
2017
, “
A Weighted Multiple-Relaxation-Time Lattice Boltzmann Method for Multiphase Flows and Its Application to Partial Coalescence Cascades
,”
J. Comput. Phys.
,
341
, pp.
22
43
.10.1016/j.jcp.2017.03.062
34.
Watanabe
,
S.
, and
Aoki
,
T.
,
2021
, “
Large-Scale Flow Simulations Using Lattice Boltzmann Method With AMR Following Free-Surface on Multiple GPUs
,”
Comput. Phys. Commun.
,
264
, p.
107871
.10.1016/j.cpc.2021.107871
35.
Ceniceros
,
H. D.
,
Nos
,
R. L.
, and
Roma
,
A. M.
,
2010
, “
Three-Dimensional, Fully Adaptive Simulations of Phase-Field Fluid Models
,”
J. Comput. Phys.
,
229
(
17
), pp.
6135
6155
.10.1016/j.jcp.2010.04.045
36.
Khanwale
,
M. A.
,
Lofquist
,
A. D.
,
Sundar
,
H.
,
Rossmanith
,
J. A.
, and
Ganapathysubramanian
,
B.
,
2020
, “
Simulating Two-Phase Flows With Thermodynamically Consistent Energy Stable Cahn-Hilliard Navier-Stokes Equations on Parallel Adaptive Octree Based Meshes
,”
J. Comput. Phys.
,
419
, p.
109674
.10.1016/j.jcp.2020.109674
37.
Ostilla-Monico
,
R.
,
Yang
,
Y.
,
van der Poel
,
E.
,
Lohse
,
D.
, and
Verzicco
,
R.
,
2015
, “
A Multiple-Resolution Strategy for Direct Numerical Simulation of Scalar Turbulence
,”
J. Comput. Phys.
,
301
, p.
308
.10.1016/j.jcp.2015.08.031
38.
Ding
,
H.
, and
Yuan
,
C.-J.
,
2014
, “
On the Diffuse Interface Method Using a Dual-Resolution Cartesian Grid
,”
J. Comput. Phys.
,
273
, p.
243
.10.1016/j.jcp.2014.05.005
39.
Liu
,
H.-R.
,
Ng
,
C. S.
,
Chong
,
K. L.
,
Lohse
,
D.
, and
Verzicco
,
R.
,
2021
, “
An Efficient Phase-Field Method for Turbulent Multiphase Flows
,”
J. Comput. Phys.
,
446
, p.
110659
.10.1016/j.jcp.2021.110659
40.
Bazesefidpar
,
K.
,
Brandt
,
L.
, and
Tammisola
,
O.
,
2022
, “
A Dual Resolution Phase–Field Solver for Wetting of Viscoelastic Droplets
,”
Int. J. Numer. Methods Fluids
,
94
, p.
1517
.10.1002/fld.5100
41.
Feng
,
W.
,
Yu
,
P.
,
Hu
,
S.
,
Liu
,
Z.-K.
,
Du
,
Q.
, and
Chen
,
L.-Q.
,
2006
, “
Spectral Implementation of an Adaptive Moving Mesh Method for Phase-Field Equations
,”
J. Comput. Phys.
,
220
(
1
), pp.
498
510
.10.1016/j.jcp.2006.07.013
42.
Burstedde
,
C.
,
Wilcox
,
L. C.
, and
Ghattas
,
O.
,
2011
, “
p4est: Scalable Algorithms for Parallel Adaptive Mesh Refinement on Forests of Octrees
,”
SIAM J. Sci. Comput.
,
33
(
3
), pp.
1103
1133
.10.1137/100791634
43.
Mangani
,
F.
,
Soligo
,
G.
,
Roccon
,
A.
, and
Soldati
,
A.
,
2022
, “
Influence of Density and Viscosity on Deformation, Breakage, and Coalescence of Bubbles in Turbulence
,”
Phys. Rev. Fluids
,
7
, p.
053601
.10.1103/PhysRevFluids.7.053601
44.
Mangani
,
F.
,
Roccon
,
A.
,
Zonta
,
F.
, and
Soldati
,
A.
,
2024
, “
Heat Transfer in Drop-Laden Turbulence
,”
J. Fluid Mech.
,
978
, p.
A12
.10.1017/jfm.2023.1002
45.
Giamagas
,
G.
,
Zonta
,
F.
,
Roccon
,
A.
, and
Soldati
,
A.
,
2023
, “
Propagation of Capillary Waves in Two-Layer Oil–Water Turbulent Flow
,”
J. Fluid Mech.
,
960
, p.
A5
.10.1017/jfm.2023.189
46.
Anderson
,
D. M.
,
McFadden
,
G. B.
, and
Wheeler
,
A. A.
,
1998
, “
Diffuse-Interface Methods in Fluid Mechanics
,”
Annu. Rev. Fluid Mech.
,
30
, p.
139
.10.1146/annurev.fluid.30.1.139
47.
Roccon
,
A.
,
Zonta
,
F.
, and
Soldati
,
A.
,
2023
, “
Phase-Field Modeling of Complex Interface Dynamics in Drop-Laden Turbulence
,”
Phys. Rev. Fluids
,
8
, p.
090501
.10.1103/PhysRevFluids.8.090501
48.
Badalassi
,
V.
,
Ceniceros
,
H.
, and
Banerjee
,
S.
,
2003
, “
Computation of Multiphase Systems With Phase Field Models
,”
J. Comput. Phys.
,
190
, p.
371
.10.1016/S0021-9991(03)00280-8
49.
Tóth
,
G. I.
, and
Kvamme
,
B.
,
2015
, “
Analysis of Ginzburg-Landau-Type Models of Surfactant-Assisted Liquid Phase Separation
,”
Phys. Rev. E
,
91
, p.
032404
.10.1103/PhysRevE.91.032404
50.
Scarbolo
,
L.
,
Bianco
,
F.
, and
Soldati
,
A.
,
2015
, “
Coalescence and Breakup of Large Droplets in Turbulent Channel Flow
,”
Phys. Fluids
,
27
(
7
), p.
073302
.10.1063/1.4923424
51.
Yue
,
P.
,
Zhou
,
C.
, and
Feng
,
J.
,
2007
, “
Spontaneous Shrinkage of Drops and Mass Conservation in Phase-Field Simulations
,”
J. Comput. Phys.
,
223
(
1
), pp.
1
9
.10.1016/j.jcp.2006.11.020
52.
Li
,
Y.
,
Choi
,
J.-I.
, and
Kim
,
J.
,
2016
, “
A Phase-Field Fluid Modeling and Computation With Interfacial Profile Correction Term
,”
Commun. Nonlinear Sci. Numer. Simul.
,
30
, p.
84
.10.1016/j.cnsns.2015.06.012
53.
Soligo
,
G.
,
Roccon
,
A.
, and
Soldati
,
A.
,
2019
, “
Mass-Conservation-Improved Phase Field Methods for Turbulent Multiphase Flow Simulation
,”
Acta Mech.
,
230
, p.
683
.10.1007/s00707-018-2304-2
54.
Yue
,
P.
,
Zhou
,
C.
, and
Feng
,
J.
,
2010
, “
Sharp-Interface Limit of the Cahn–Hilliard Model for Moving Contact Lines
,”
J. Fluid Mech.
,
645
, p.
279
.10.1017/S0022112009992679
55.
Magaletti
,
F.
,
Picano
,
F.
,
Chinappi
,
M.
,
Marino
,
L.
, and
Casciola
,
C. M.
,
2013
, “
The Sharp-Interface Limit of the Cahn–Hilliard/Navier–Stokes Model for Binary Fluids
,”
J. Fluid Mech.
,
714
, pp.
95
126
.10.1017/jfm.2012.461
56.
Prosperetti
,
A.
, and
Tryggvason
,
G.
,
2009
,
Computational Methods for Multiphase Flow
,
Cambridge University Press
,
Cambridge, UK
.
57.
Elghobashi
,
S.
,
2019
, “
Direct Numerical Simulation of Turbulent Flows Laden With Droplets or Bubbles
,”
Annu. Rev. Fluid Mech.
,
51
(
1
), pp.
217
244
.10.1146/annurev-fluid-010518-040401
58.
Lafaurie
,
B.
,
Nardone
,
C.
,
Scardovelli
,
R.
,
Zaleski
,
S.
, and
Zanetti
,
G.
,
1994
, “
Modelling Merging and Fragmentation in Multiphase Flows With SURFER
,”
J. Comput. Phys.
,
113
(
1
), pp.
134
147
.10.1006/jcph.1994.1123
59.
Gueyffier
,
D.
,
Li
,
J.
,
Nadim
,
A.
,
Scardovelli
,
R.
, and
Zaleski
,
S.
,
1999
, “
Volume-of-Fluid Interface Tracking With Smoothed Surface Stress Methods for Three-Dimensional Flows
,”
J. Comput. Phys.
,
152
(
2
), pp.
423
456
.10.1006/jcph.1998.6168
60.
Korteweg
,
D. J.
,
1901
, “
Sur la Forme Que Prennent Les Equations du Mouvements Des Fluides si L'on Tient Compte Des Forces Capillaires Causees Par Des Variations de Densite Considerables Mais Connues et Sur la Theorie de la Capillarite Dans L'hypothese D'une Variation Continue de la Densite
,”
Arch. Neerl. Sci. Exactes Nat.
,
6
, pp.
1
24
.
61.
Ding
,
H.
,
Spelt
,
P. D.
, and
Shu
,
C.
,
2007
, “
Diffuse Interface Model for Incompressible Two-Phase Flows With Large Density Ratios
,”
J. Comput. Phys.
,
226
, p.
2078
.10.1016/j.jcp.2007.06.028
62.
Kim
,
J.
,
2012
, “
Phase-Field Models for Multi-Component Fluid Flows
,”
Commun. Comput. Phys.
,
12
(
3
), pp.
613
661
.10.4208/cicp.301110.040811a
63.
Alpak
,
F. O.
,
Riviere
,
B.
, and
Frank
,
F.
,
2016
, “
A Phase-Field Method for the Direct Simulation of Two-Phase Flows in Pore-Scale Media Using a Non-Equilibrium Wetting Boundary Condition
,”
Comput. Geosci.
,
20
, p.
881
.10.1007/s10596-015-9551-2
64.
Roccon
,
A.
,
De Paoli
,
M.
,
Zonta
,
F.
, and
Soldati
,
A.
,
2017
, “
Viscosity-Modulated Breakup and Coalescence of Large Drops in Bounded Turbulence
,”
Phys. Rev. Fluids
,
2
, p.
083603
.10.1103/PhysRevFluids.2.083603
65.
Kim
,
J.
,
Moin
,
P.
, and
Moser
,
R.
,
1987
, “
Turbulence Statistics in Fully Developed Channel Flow at Low Reynolds Number
,”
J. Fluid Mech.
,
177
, pp.
133
166
.10.1017/S0022112087000892
66.
Speziale
,
C. G.
,
1987
, “
On the Advantages of the Vorticity-Velocity Formulation of the Equations of Fluid Dynamics
,”
J. Comput. Phys.
,
73
(
2
), pp.
476
480
.10.1016/0021-9991(87)90149-5
67.
Zonta
,
F.
,
Marchioli
,
C.
, and
Soldati
,
A.
,
2012
, “
Modulation of Turbulence in Forced Convection by Temperature-Dependent Viscosity
,”
J. Fluid Mech.
,
697
, pp.
150
174
.10.1017/jfm.2012.67
68.
Zonta
,
F.
,
Onorato
,
M.
, and
Soldati
,
A.
,
2012
, “
Turbulence and Internal Waves in Stably-Stratified Channel Flow With Temperature-Dependent Fluid Properties
,”
J. Fluid Mech.
,
697
, pp.
175
203
.10.1017/jfm.2012.51
69.
Soligo
,
G.
,
Roccon
,
A.
, and
Soldati
,
A.
,
2019
, “
Coalescence of Surfactant-Laden Drops by Phase Field Method
,”
J. Comput. Phys.
,
376
, p.
1292
.10.1016/j.jcp.2018.10.021
70.
Hussaini
,
M. Y.
, and
Zang
,
T. A.
,
1987
, “
Spectral Methods in Fluid Dynamics
,”
Annu. Rev. Fluid Mech.
,
19
(
1
), pp.
339
367
.10.1146/annurev.fl.19.010187.002011
71.
Peyret
,
R.
,
2002
,
Spectral Methods for Incompressible Viscous Flow (Applied Mathematical Sciences
, Vol.
148
),
Springer
,
New York
.
72.
Turisini
,
M.
,
Amati
,
G.
, and
Cestari
,
M.
,
2024
, “
LEONARDO: A Pan-European Pre-Exascale Supercomputer for HPC and AI Applications
,”
Jnl. Large-scale Res. Fac.
, 9(1).10.17815/jlsrf-8-186
73.
Yue
,
P.
,
Feng
,
J. J.
,
Liu
,
C.
, and
Shen
,
J.
,
2004
, “
A Diffuse-Interface Method for Simulating Two-Phase Flows of Complex Fluids
,”
J. Fluid Mech.
,
515
, pp.
293
317
.10.1017/S0022112004000370
74.
Taylor
,
G. I.
,
1932
, “
The Viscosity of a Fluid Containing Small Drops of Another Fluid
,”
Proc. R. Soc. London, Ser. A
,
138
(
834
), pp.
41
48
.10.1098/rspa.1932.0169
75.
Taylor
,
G. I.
,
1934
, “
The Formation of Emulsions in Definable Fields of Flow
,”
Proc. R. Soc. London, Ser. A
,
146
(
858
), pp.
501
523
.10.1098/rspa.1934.0169
76.
Shapira
,
M.
, and
Haber
,
S.
,
1990
, “
Low Reynolds Number Motion of a Droplet in Shear Flow Including Wall Effects
,”
Int. J. Multiphase Flow
,
16
(
2
), pp.
305
321
.10.1016/0301-9322(90)90061-M
77.
Zhou
,
H.
, and
Pozrikidis
,
C.
,
1993
, “
The Flow of Suspensions in Channels: Single Files of Drops
,”
Phys. Fluids
,
5
(
2
), pp.
311
324
.10.1063/1.858893
78.
Tang
,
H.
,
Wrobel
,
L.
, and
Fan
,
Z.
,
2004
, “
Tracking of Immiscible Interfaces in Multiple-Material Mixing Processes
,”
Comput. Mater. Sci.
,
29
(
1
), pp.
103
118
.10.1016/j.commatsci.2003.07.002
79.
Soligo
,
G.
,
Roccon
,
A.
, and
Soldati
,
A.
,
2020
, “
Deformation of Clean and Surfactant-Laden Droplets in Shear Flow
,”
Meccanica
,
55
, pp.
371
386
.10.1007/s11012-019-00990-9
80.
Sander
,
W.
, and
Weigand
,
B.
,
2008
, “
Direct Numerical Simulation and Analysis of Instability Enhancing Parameters in Liquid Sheets at Moderate Reynolds Numbers
,”
Phys. Fluids
,
20
, p.
053301
.10.1063/1.2909661
81.
Kozul
,
M.
,
Costa
,
P. S.
,
Dawson
,
J. R.
, and
Brandt
,
L.
,
2020
, “
Aerodynamically Driven Rupture of a Liquid Film by Turbulent Shear Flow
,”
Phys. Rev. Fluids
,
5
, p.
124302
.10.1103/PhysRevFluids.5.124302
82.
Lasheras
,
J.
,
Eastwood
,
C.
,
Mart Inez-Bazán
,
C.
, and
Montanes
,
J.
,
2002
, “
A Review of Statistical Models for the Break-Up of an Immiscible Fluid Immersed Into a Fully Developed Turbulent Flow
,”
Int. J. Multiphase Flow
,
28
(
2
), pp.
247
278
.10.1016/S0301-9322(01)00046-5
83.
Eastwood
,
C. D.
,
Armi
,
L.
, and
Lasheras
,
J.
,
2004
, “
The Breakup of Immiscible Fluids in Turbulent Flows
,”
J. Fluid Mech.
,
502
, pp.
309
333
.10.1017/S0022112003007730
84.
Ruiz-Rus
,
J.
,
Ern
,
P.
,
Roig
,
V.
, and
Martínez-Bazán
,
C.
,
2022
, “
Coalescence of Bubbles in a High Reynolds Number Confined Swarm
,”
J. Fluid Mech.
,
944
, p.
A13
.10.1017/jfm.2022.492
85.
Håkansson
,
A.
, and
Brandt
,
L.
,
2022
, “
Deformation and Initial Breakup Morphology of Viscous Emulsion Drops in Isotropic Homogeneous Turbulence With Relevance for Emulsification Devices
,”
Chem. Eng. Sci.
,
253
, p.
117599
.10.1016/j.ces.2022.117599
86.
Olad
,
P.
,
Innings
,
F.
,
Crialesi-Esposito
,
M.
,
Brandt
,
L.
, and
Håkansson
,
A.
,
2023
, “
Comparison of Turbulent Drop Breakup in an Emulsification Device and Homogeneous Isotropic Turbulence: Insights From Numerical Experiments
,”
Colloids Surf., A
,
657
, p.
130569
.10.1016/j.colsurfa.2022.130569
87.
Farsoiya
,
P. K.
,
Liu
,
Z.
,
Daiss
,
A.
,
Fox
,
R. O.
, and
Deike
,
L.
,
2023
, “
Role of Viscosity in Turbulent Drop Break-Up
,”
J. Fluid Mech.
,
972
, p.
A11
.10.1017/jfm.2023.684
88.
Kolmogorov
,
A. N.
,
1991
, “
The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Numbers
,”
Proc. R. Soc. London, Ser. A
,
434
(
1890
), pp.
9
13
.10.1098/rspa.1991.0075
89.
Hinze
,
J.
,
1955
, “
Fundamentals of the Hydrodynamic Mechanism of Splitting in Dispersion Processes
,”
AIChE J.
,
1
(
3
), pp.
289
295
.10.1002/aic.690010303
90.
Perlekar
,
P.
,
Biferale
,
L.
, and
Sbragaglia
,
M.
,
2012
, “
Droplet Size Distribution in Homogeneous Isotropic Turbulence
,”
Phys. Fluids
,
24
(
6
), p.
065101
.10.1063/1.4719144
91.
Vela-Martín
,
A.
, and
Avila
,
M.
,
2022
, “
Memoryless Drop Breakup in Turbulence
,”
Sci. Adv.
,
8
(
50
), p.
eabp9561
.10.1126/sciadv.abp9561
92.
Garrett
,
C.
,
Li
,
M.
, and
Farmer
,
D.
,
2000
, “
The Connection Between Bubble Size Spectra and Energy Dissipation Rates in the Upper Ocean
,”
J. Phys. Oceanogr.
,
30
(
9
), pp.
2163
2171
.10.1175/1520-0485(2000)030<2163:TCBBSS>2.0.CO;2
93.
Deane
,
G. B.
, and
Stokes
,
M. D.
,
2002
, “
Scale Dependence of Bubble Creation Mechanisms in Breaking Waves
,”
Nature
,
418
, p.
839
.10.1038/nature00967
94.
Deike
,
L.
,
Melville
,
W.
, and
Popinet
,
S.
,
2016
, “
Air Entrainment and Bubble Statistics in Breaking Waves
,”
J. Fluid Mech.
,
801
, pp.
91
129
.10.1017/jfm.2016.372
You do not currently have access to this content.