Abstract

Multi-stage centrifugal pumps are frequently used in high-lift applications and consume considerable energy, but suffer from poor performance and large axial force. The rear shroud of impeller is trimmed for reducing axial thrust, but this degrades performance. This study analyzes performance degradation and optimizes performance and axial force. Experiments and simulations are conducted on different ratios of rear shroud to front shroud (λ). Total pressure losses are calculated, and flow losses are visualized using the entropy generation method. Both measured and simulated performances decrease as the rear shroud is trimmed. Designs with different λ meet the head coefficient requirement of 1.1. However, λ of 0.86 has the best efficiency of 42.7%, λ of 0.83 reaches 42.5%, λ of 0.8 shows the lowest efficiency of 39.9%. Efficiency in the middle channel improves as the rear shroud is trimmed, but this cannot offset increased losses in the impeller and rear side chamber. Entropy production is exacerbated in the axial passage between impeller and rear side chamber due to the collision between impeller-driven flow and pressure-driven backflow. When λ is reduced by 0.03, axial thrust drops by 7%. To compromise between performance and axial thrust, λ should be designed at 0.83.

References

1.
Su
,
X. H.
,
Huang
,
S.
,
Li
,
Y.
,
Zhu
,
Z. C.
, and
Li
,
Z. G.
,
2017
, “
Numerical and Experimental Research on Multi-Stage Pump as Turbine System
,”
Int. J. Green Energy
,
14
(
12
), pp.
996
1004
.10.1080/15435075.2017.1350961
2.
Zhao
,
J. T.
,
Pei
,
J.
,
Yuan
,
J. P.
, and
Wang
,
W. J.
,
2022
, “
Energy-Saving Oriented Optimization Design of the Impeller and Volute of a Multi-Stage Double-Suction Centrifugal Pump Using Artificial Neural Network
,”
Eng. Appl. Comput. Fluid Mech.
,
16
(
1
), pp.
1974
2001
.10.1080/19942060.2022.2127913
3.
Zhu
,
H. W.
,
Zhu
,
J. J.
, and
Zhang
,
H. Q.
,
2022
, “
Mechanistic Modeling of Gas Effect on Multi-Stage Electrical Submersible Pump (ESP) Performance With Experimental Validation
,”
Chem. Eng. Sci.
,
252
, p.
117288
.10.1016/j.ces.2021.117288
4.
Jin
,
Y. X.
,
Zhang
,
D. S.
,
Song
,
W. W.
,
Shen
,
X.
,
Shi
,
L.
, and
Lu
,
J. X.
,
2022
, “
Numerical Study on Energy Conversion Characteristics of Molten Salt Pump Based on Energy Transport Theory
,”
Energy
,
244
, p.
122674
.10.1016/j.energy.2021.122674
5.
Martin
,
S.
,
Jean-Michel
,
N. D.
, and
Fonteyn
,
P.
,
2022
, “
Stability of Hydrogen Turbopump Rotor Shaft Axially Self-Balanced
,”
ASME J. Fluids Eng.
,
144
(
9
), p.
091206
.10.1115/1.4054025
6.
Zhou
,
W. J.
,
Cao
,
Y. H.
,
Zhang
,
N.
,
Gao
,
B.
,
Qiu
,
N.
, and
Zhang
,
W. B.
,
2020
, “
A Novel Axial Vibration Model of Multistage Pump Rotor System With Dynamic Force of Balance Disc
,”
J. Vib. Eng. Technol.
,
8
(
5
), pp.
673
683
.10.1007/s42417-019-00164-7
7.
Zhang
,
S.
,
Li
,
H. X.
, and
Xi
,
D. K.
,
2019
, “
Investigation of the Integrated Model of Side Chamber, Wear-Rings Clearance, and Balancing Holes for Centrifugal Pumps
,”
ASME J. Fluids Eng.
,
141
(
10
), p.
101101
.10.1115/1.4043059
8.
Shamsuddeen
,
M. M.
,
Ma
,
S. B.
,
Kim
,
S.
,
Yoon
,
J. H.
,
Lee
,
K. H.
,
Jung
,
C.
, and
Kim
,
J. H.
,
2021
, “
Flow Field Analysis and Feasibility Study of a Multistage Centrifugal Pump Designed for Low-Viscous Fluids
,”
Appl. Sci.
,
11
(
3
), p.
1314
.10.3390/app11031314
9.
Zhou
,
L.
,
Shi
,
W. D.
,
Li
,
W.
, and
Agarwal
,
R.
,
2013
, “
Numerical and Experimental Study of Axial Force and Hydraulic Performance in a Deep-Well Centrifugal Pump With Different Impeller Rear Shroud Radius
,”
ASME J. Fluids Eng.
,
135
(
10
), p.
104501
.10.1115/1.4024894
10.
Gölcü
,
M.
,
Pancar
,
Y.
, and
Sekmen
,
Y.
,
2006
, “
Energy Saving in a Deep Well Pump With Splitter Blade
,”
Energy Convers. Manage.
,
47
(
5
), pp.
638
651
.10.1016/j.enconman.2005.05.001
11.
Shojaeefard
,
M. H.
,
Tahani
,
M.
,
Ehghaghi
,
M. B.
,
Fallahian
,
M. A.
, and
Beglari
,
M.
,
2012
, “
Numerical Study of the Effects of Some Geometric Characteristics of a Centrifugal Pump Impeller That Pumps a Viscous Fluid
,”
Comput. Fluids
,
60
, pp.
61
70
.10.1016/j.compfluid.2012.02.028
12.
Suh
,
S.-H.
,
Kim
,
K.-W.
,
Kim
,
H.-H.
,
Yoon
,
I. S.
,
Cho
,
M.-T.
, and
Rakibuzzaman
,
2015
, “
A Study on Energy Saving Rate for Variable Speed Condition of Multistage Centrifugal Pump
,”
J. Therm. Sci.
,
24
(
6
), pp.
566
573
.10.1007/s11630-015-0824-9
13.
Zhang
,
Q. H.
,
Xu
,
Y. H.
,
Cao
,
L.
,
Shi
,
W. D.
, and
Lu
,
W. G.
,
2016
, “
Design and Performance Research of a Mixed-Flow Submersible Deep Well Pump
,”
Int. J. Fluid Mach. Syst.
,
9
(
3
), pp.
256
264
.10.5293/IJFMS.2016.9.3.256
14.
Wang
,
C.
,
Shi
,
W. D.
,
Wang
,
X. K.
,
Jiang
,
X. P.
,
Yang
,
Y.
,
Li
,
W.
, and
Zhou
,
L.
,
2017
, “
Optimal Design of Multistage Centrifugal Pump Based on the Combined Energy Loss Model and Computational Fluid Dynamics
,”
Appl. Energy
,
187
, pp.
10
26
.10.1016/j.apenergy.2016.11.046
15.
Zhou
,
W. J.
,
Qiu
,
N.
,
Wang
,
L. Q.
,
Gao
,
B.
, and
Liu
,
D.
,
2018
, “
Dynamic Analysis of a Planar Multi-Stage Centrifugal Pump Rotor System Based on a Novel Coupled Model
,”
J. Sound Vib.
,
434
, pp.
237
260
.10.1016/j.jsv.2018.07.041
16.
Pavlenko
,
I.
,
Trojanowska
,
J.
,
Gusak
,
O.
,
Ivanov
,
V.
,
Pitel
,
J.
, and
Pavlenko
,
V.
,
2018
, “
Estimation of the Reliability of Automatic Axial-Balancing Devices for Multistage Centrifugal Pumps
,”
Period. Polytech., Mech. Eng.
,
63
(
1
), pp.
52
56
.10.3311/PPme.12801
17.
Bai
,
L.
,
Zhou
,
L.
,
Jiang
,
X. P.
,
Pang
,
Q. L.
, and
Ye
,
D. X.
,
2019
, “
Vibration in a Multistage Centrifugal Pump Under Varied Conditions
,”
Shock Vib.
,
2019
, pp.
1
9
.10.1155/2019/2057031
18.
Zhu
,
D.
,
Xiao
,
R. F.
,
Yao
,
Z. F.
,
Yang
,
W.
, and
Liu
,
W. C.
,
2020
, “
Optimization Design for Reducing the Axial Force of a Vaned Mixed-Flow Pump
,”
Eng. Appl. Comput. Fluid Mech.
,
14
(
1
), pp.
882
896
.10.1080/19942060.2020.1749933
19.
Tong
,
S. G.
,
Zhao
,
H.
,
Liu
,
H. Q.
,
Yu
,
Y.
,
Li
,
J. F.
, and
Cong
,
F. Y.
,
2020
, “
Multi-Objective Optimization of Multistage Centrifugal Pump Based on Surrogate Model
,”
ASME J. Fluids Eng.
,
142
(
1
), p.
011101
.10.1115/1.4043775
20.
Shim
,
H. S.
, and
Kim
,
K. Y.
,
2020
, “
Design Optimization of the Impeller and Volute of a Centrifugal Pump to Improve the Hydraulic Performance and Flow Stability
,”
ASME J. Fluids Eng.
,
142
(
10
), p.
101211
.10.1115/1.4047539
21.
Gong
,
X. B.
,
Pei
,
J.
,
Wang
,
W. J.
,
Osman
,
M. K.
,
Jiang
,
W.
,
Zhao
,
J. T.
, and
Deng
,
Q. F.
,
2021
, “
Nature-Inspired Modified Bat Algorithm for the High-Efficiency Optimization of a Multistage Centrifugal Pump for a Reverse Osmosis Desalination System
,”
J. Mar. Sci. Eng.
,
9
(
7
), p.
771
.10.3390/jmse9070771
22.
Shamsuddeen
,
M. M.
,
Ma
,
S. B.
,
Kim
,
S.
,
Yoon
,
J. H.
,
Lee
,
K. H.
,
Jung
,
C.
, and
Kim
,
J. H.
,
2021
, “
Effect of an Inducer-Type Guide Vane on Hydraulic Losses at the Inter-Stage Flow Passage of a Multistage Centrifugal Pump
,”
Processes
,
9
(
3
), p.
526
.10.3390/pr9030526
23.
Qian
,
C.
,
Luo
,
X.
,
Yang
,
C. X.
, and
Wang
,
B.
,
2021
, “
Multistage Pump Axial Force Control and Hydraulic Performance Optimization Based on Response Surface Methodology
,”
J. Braz. Soc. Mech. Sci. Eng.
,
43
(
3
), pp.
1
14
.10.1007/s40430-021-02849-1
24.
Xin
,
J. G.
,
Tong
,
Z. M.
, and
Zhu
,
W. N.
,
2022
, “
A Patch-Based Flow Field Reconstruction Method for Particle Image Velocimetry Data of Multistage Centrifugal Pumps
,”
ASME J. Fluids Eng.
,
144
(
12
), p.
121502
.10.1115/1.4055294
25.
Chang
,
L.
,
Xu
,
Q.
,
Yang
,
C. Y.
,
Su
,
X. B.
,
Dai
,
X. Y.
, and
Guo
,
L. J.
,
2023
, “
Experimental Study on Gas-Liquid Performance and Prediction of Shaft Power and Efficiency by Dimensionless Coefficients in a Multistage Electrical Submersible Pump
,”
ASME J. Fluids Eng.
,
145
(
7
), p.
071204
.10.1115/1.4062087
26.
Zhou
,
L.
,
Hang
,
J. W.
,
Bai
,
L.
,
Krzemianowski
,
Z.
,
El-Emam
,
M. A.
,
Yasser
,
E.
, and
Agarwal
,
R.
,
2022
, “
Application of Entropy Production Theory for Energy Losses and Other Investigation in Pumps and Turbines: A Review
,”
Appl. Energy
,
318
, p.
119211
.10.1016/j.apenergy.2022.119211
27.
Kock
,
F.
, and
Herwig
,
H.
,
2004
, “
Local Entropy Production in Turbulent Shear Flows: A High-Reynolds Number Model With Wall Functions
,”
Int. J. Heat Mass Transfer
,
47
(
10–11
), pp.
2205
2215
.10.1016/j.ijheatmasstransfer.2003.11.025
28.
Kock
,
F.
, and
Herwig
,
H.
,
2005
, “
Entropy Production Calculation for Turbulent Shear Flows and Their Implementation in CFD Codes
,”
Int. J. Heat Fluid Flow
,
26
(
4
), pp.
672
680
.10.1016/j.ijheatfluidflow.2005.03.005
29.
Böhle
,
M.
,
Fleder
,
A.
, and
Mohr
,
M.
,
2016
, “
Study of the Losses in Fluid Machinery With the Help of Entropy
,”
Proceedings of the 16th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
, Honolulu, HI, Apr. 2016, p. hal-01879371.https://hal.archives-ouvertes.fr/hal-01879371/
30.
Wang
,
C.
,
Zhang
,
Y. X.
,
Hou
,
H. C.
,
Zhang
,
J. Y.
, and
Xu
,
C.
,
2019
, “
Entropy Production Diagnostic Analysis of Energy Consumption for Cavitation Flow in a Two-Stage LNG Cryogenic Submerged Pump
,”
Int. J. Heat Mass Transfer
,
129
, pp.
342
356
.10.1016/j.ijheatmasstransfer.2018.09.070
31.
Gu
,
Y. D.
,
Pei
,
J.
,
Yuan
,
S. Q.
,
Wang
,
W. J.
,
Zhang
,
F.
,
Wang
,
P.
,
Appiah
,
D.
, and
Liu
,
Y.
,
2019
, “
Clocking Effect of Vaned Diffuser on Hydraulic Performance of High-Power Pump by Using the Numerical Flow Loss Visualization Method
,”
Energy
,
170
, pp.
986
997
.10.1016/j.energy.2018.12.204
32.
Ghorani
,
M. M.
,
Haghighi
,
M. H. S.
,
Maleki
,
A.
, and
Riasi
,
A.
,
2020
, “
A Numerical Study on Mechanisms of Energy Dissipation in a Pump as Turbine (PAT) Using Entropy Generation Theory
,”
Renewable Energy
,
162
, pp.
1036
1053
.10.1016/j.renene.2020.08.102
33.
Ren
,
Y.
,
Zhu
,
Z. C.
,
Wu
,
D. H.
, and
Li
,
X. J.
,
2019
, “
Influence of Guide Ring on Energy Loss in a Multistage Centrifugal Pump
,”
ASME J. Fluids Eng.
,
141
(
6
), p.
061302
.10.1115/1.4041876
34.
Tao
,
R.
,
Li
,
P. X.
,
Yao
,
Z. F.
, and
Xiao
,
R. F.
,
2022
, “
Investigation of the Flow Energy Dissipation Law in a Centrifugal Impeller in Pump Mode
,”
Proc. Inst. Mech. Eng., Part A
,
236
(
2
), pp.
260
272
.10.1177/09576509211034976
35.
Kan
,
K.
,
Li
,
H. Y.
,
Chen
,
H. X.
,
Xu
,
H.
,
Gong
,
Y.
,
Li
,
T. Y.
, and
Shen
,
L.
,
2023
, “
Effects of Clearance and Operating Conditions on Tip Leakage Vortex-Induced Energy Loss in an Axial-Flow Pump Using Entropy Production Method
,”
ASME J. Fluids Eng.
,
145
(
3
), p.
031201
.10.1115/1.4056119
36.
Gu
,
Y. D.
,
Pei
,
J.
,
Yuan
,
S. Q.
, and
Zhang
,
J. F.
,
2020
, “
A Pressure Model for Open Rotor-Stator Cavities: An Application to an Adjustable-Speed Centrifugal Pump With Experimental Validation
,”
ASME J. Fluids Eng.
,
142
(
10
), p.
101301
.10.1115/1.4047532
37.
Wang
,
C.
,
Zhang
,
Y. X.
,
Yuan
,
Z. Y.
, and
Ji
,
K. Z.
,
2020
, “
Development and Application of the Entropy Production Diagnostic Model to the Cavitation Flow of a Pump-Turbine in Pump Mode
,”
Renewable Energy
,
154
, pp.
774
785
.10.1016/j.renene.2020.03.065
38.
Shen
,
X.
,
Zhang
,
D. S.
,
Xu
,
B.
,
Shi
,
W. D.
, and
Van Esch
,
B. P. M.
,
2021
, “
Experimental and Numerical Investigation on the Effect of Tip Leakage Vortex Induced Cavitating Flow on Pressure Fluctuation in an Axial Flow Pump
,”
Renewable Energy
,
163
, pp.
1195
1209
.10.1016/j.renene.2020.09.004
39.
Liu
,
M.
,
Tan
,
L.
, and
Cao
,
S. L.
,
2020
, “
Method of Dynamic Mode Decomposition and Reconstruction With Application to a Three-Stage Multiphase Pump
,”
Energy
,
208
, p.
118343
.10.1016/j.energy.2020.118343
40.
Gu
,
Y. D.
,
Li
,
J. X.
,
Wang
,
P.
,
Cheng
,
L.
,
Qiu
,
Y.
,
Wang
,
C.
, and
Si
,
Q. R.
,
2022
, “
An Improved One-Dimensional Flow Model for Side Chambers of Centrifugal Pumps Considering the Blade Slip Factor
,”
ASME J. Fluids Eng.
,
144
(
9
), p.
091207
.10.1115/1.4054138
41.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Turbul., Heat Mass Transfer
,
4
(
1
), pp.
625
632
.https://cfd.spbstu.ru/agarbaruk/doc/2003_Menter,%20Kuntz,%20Langtry_Ten%20years%20of%20industrial%20experience%20with%20the%20SST%20turbulence%20model.pdf
42.
Hu
,
B.
,
Wang
,
H.
,
Liu
,
J. H.
,
Zhu
,
Y.
,
Wang
,
C.
,
Ge
,
J.
, and
Zhang
,
Y. C.
,
2022
, “
A Numerical Study of a Submerged Water Jet Impinging on a Stationary Wall
,”
J. Mar. Sci. Eng.
,
10
(
2
), p.
228
.10.3390/jmse10020228
43.
Kim
,
J. H.
,
Cho
,
B. M.
,
Kim
,
S.
,
Lee
,
Y. K.
, and
Choi
,
Y. S.
,
2019
, “
Steady and Unsteady Flow Characteristics of a Multi-Stage Centrifugal Pump Under Design and Off-Design Conditions
,”
Int. J. Fluid Mach. Syst.
,
12
(
1
), pp.
64
70
.10.5293/IJFMS.2019.12.1.064
44.
Parikh
,
T.
,
Mansour
,
M.
, and
Thévenin
,
D.
,
2020
, “
Investigations on the Effect of Tip Clearance Gap and Inducer on the Transport of Air-Water Two-Phase Flow by Centrifugal Pumps
,”
Chem. Eng. Sci.
,
218
, p.
115554
.10.1016/j.ces.2020.115554
45.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
46.
Gülich
,
J. F.
,
2008
,
Centrifugal Pumps
,
Springer
,
Berlin, Germany
.
47.
Lai
,
F.
,
Huang
,
M. L.
,
Wu
,
X. F.
,
Nie
,
C. H.
, and
Li
,
G. J.
,
2022
, “
Local Entropy Generation Analysis for Cavitation Flow Within a Centrifugal Pump
,”
ASME J. Fluids Eng.
,
144
(
10
), p.
101206
.10.1115/1.4054467
48.
Yu
,
Z. F.
,
Wang
,
W. Q.
,
Yan
,
Y.
, and
Liu
,
X. S.
,
2021
, “
Energy Loss Evaluation in a Francis Turbine Under Overall Operating Conditions Using Entropy Production Method
,”
Renewable Energy
,
169
, pp.
982
999
.10.1016/j.renene.2021.01.054
49.
Zhou
,
X.
,
Shi
,
C. Z.
,
Miyagawa
,
K.
, and
Wu
,
H. G.
,
2021
, “
Effect of Modified Draft Tube With Inclined Conical Diffuser on Flow Instabilities in Francis Turbine
,”
Renewable Energy
,
172
, pp.
606
617
.10.1016/j.renene.2021.03.075
50.
Zhou
,
X.
,
Wu
,
H. G.
,
Cheng
,
L.
,
Huang
,
Q. S.
, and
Shi
,
C. Z.
,
2023
, “
A New Draft Tube Shape Optimisation Methodology of Introducing Inclined Conical Diffuser in Hydraulic Turbine
,”
Energy
,
265
, p.
126374
.10.1016/j.energy.2022.126374
51.
Melzer
,
S.
,
Pesch
,
A.
,
Schepeler
,
S.
,
Kalkkuhl
,
T.
, and
Skoda
,
R.
,
2020
, “
Three-Dimensional Simulation of Highly Unsteady and Isothermal Flow in Centrifugal Pumps for the Local Loss Analysis Including a Wall Function for Entropy Production
,”
ASME J. Fluids Eng.
,
142
(
11
), p.
111209
.10.1115/1.4047967
52.
Gu
,
Y. D.
,
Cheng
,
J. W.
,
Wang
,
P.
,
Cheng
,
L.
,
Si
,
Q. R.
,
Wang
,
C.
, and
Yuan
,
S. Q.
,
2022
, “
A Flow Model for Side Chambers of Centrifugal Pumps Considering Radial Wall Shear Stress
,”
Proc. Inst. Mech. Eng., Part C
,
236
(
13
), pp.
7115
7126
.10.1177/09544062211073023
53.
Shen
,
X.
,
Zhao
,
X. T.
,
Xu
,
B.
,
Zhang
,
D. S.
,
Yang
,
G.
,
Shi
,
W. D.
, and
Van Esch
,
B. P. M.
,
2022
, “
Unsteady Characteristics of Tip Leakage Vortex Structure and Dynamics in an Axial Flow Pump
,”
Ocean Eng.
,
266
, p.
112850
.10.1016/j.oceaneng.2022.112850
54.
Lu
,
Z. H.
,
Tao
,
R.
,
Yao
,
Z. F.
,
Liu
,
W. C.
, and
Xiao
,
R. F.
,
2022
, “
Effects of Guide Vane Shape on the Performances of Pump-Turbine: A Comparative Study in Energy Storage and Power Generation
,”
Renewable Energy
,
197
, pp.
268
287
.10.1016/j.renene.2022.07.099
55.
Lu
,
J. X.
,
Wu
,
F.
,
Liu
,
X. B.
,
Zhu
,
B. S.
,
Yuan
,
S. Q.
, and
Wang
,
J.
,
2022
, “
Investigation of the Mechanism of Unsteady Flow Induced by Cavitation at the Tongue of a Centrifugal Pump Based on the Proper Orthogonal Decomposition Method
,”
Phys. Fluids
,
34
(
10
), p.
105113
.10.1063/5.0113020
You do not currently have access to this content.